proarrow-0: Category theory with a central role for profunctors
User Comments
Contents
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
:
!
$
%
&
*
+
.
/
<
=
?
\
^
|
~
All
Index - C
Cart
Proarrow.Category.Equipment
Cartesian
Proarrow.Object.BinaryProduct
CAT
Proarrow.Core
,
Proarrow.Category
, Proarrow
Cat
1 (Type/Class)
Proarrow.Category.Instance.Cat
2 (Data Constructor)
Proarrow.Category.Instance.Cat
cata
Proarrow.Profunctor.Fix
CatAsComonoid
1 (Type/Class)
Proarrow.Category.Instance.Nat
2 (Data Constructor)
Proarrow.Category.Instance.Nat
Category
1 (Type/Class)
Proarrow.Core
2 (Type/Class)
Proarrow.Category.Bicategory.CategoryAsBi
CategoryOf
Proarrow.Core
,
Proarrow.Category
, Proarrow
CATK
Proarrow.Category.Enriched
CCC
Proarrow.Object.Exponential
ccomp
Proarrow.Preorder
cdimap
Proarrow.Preorder
cdimapDefault
Proarrow.Preorder
CF
Proarrow.Category.Bicategory.Prof
choose
Proarrow.Category.Limit
cid
Proarrow.Preorder
CK
Proarrow.Category.Enriched
Classifying
1 (Type/Class)
Proarrow.Category.Monoidal.Optic
2 (Data Constructor)
Proarrow.Category.Monoidal.Optic
Closed
Proarrow.Object.Exponential
CNSTRNT
Proarrow.Category.Instance.Constraint
CO
Proarrow.Category.Bicategory.Co
Co
1 (Type/Class)
Proarrow.Category.Bicategory.Co
2 (Data Constructor)
Proarrow.Category.Bicategory.Co
3 (Data Constructor)
Proarrow.Profunctor.Star
COb
Proarrow.Preorder
Cocartesian
Proarrow.Object.BinaryCoproduct
CoCCC
Proarrow.Object.Coexponential
cochoose
Proarrow.Category.Colimit
Coclosed
Proarrow.Object.Coexponential
codiag
Proarrow.Object.BinaryCoproduct
Codiscrete
Proarrow.Preorder.ThinCategory
coeval
Proarrow.Object.Coexponential
coeval'
Proarrow.Object.Coexponential
coevalUniv
Proarrow.Object.Coexponential
coevalUniv'
Proarrow.Object.Coexponential
Cofree
Proarrow.Profunctor.Cofree
CofreeSub
1 (Type/Class)
Proarrow.Profunctor.Cofree
2 (Data Constructor)
Proarrow.Profunctor.Cofree
coindex
Proarrow.Profunctor.Corepresentable
COK
Proarrow.Category.Bicategory.Co
Colimit
1 (Type/Class)
Proarrow.Category.Equipment.Limit
2 (Type/Class)
Proarrow.Category.Colimit
colimit
1 (Function)
Proarrow.Category.Equipment.Limit
2 (Function)
Proarrow.Category.Colimit
colimitUniv
1 (Function)
Proarrow.Category.Equipment.Limit
2 (Function)
Proarrow.Category.Colimit
COLLAGE
Proarrow.Category.Instance.Collage
,
Proarrow.Category.Instance.Coproduct
Collage
Proarrow.Category.Instance.Collage
combineDual
Proarrow.Object.Dual
combineDual'
Proarrow.Object.Dual
ComConAdjunction
Proarrow.Category.Equipment
comConCounit
Proarrow.Category.Equipment
comConUnit
Proarrow.Category.Equipment
Comonad
Proarrow.Category.Bicategory
Comonoid
Proarrow.Monoid
ComonoidAsCat
1 (Type/Class)
Proarrow.Category.Instance.Nat
2 (Data Constructor)
Proarrow.Category.Instance.Nat
Comp
Proarrow.Profunctor.Free
comp
Proarrow.Object.Exponential
CompactClosed
Proarrow.Object.Dual
compactClosedTrace
Proarrow.Object.Dual
Companion
Proarrow.Category.Equipment
companionFold
Proarrow.Category.Equipment
compFromCompose
Proarrow.Category.Equipment
compFromId
Proarrow.Category.Equipment
compId
1 (Function)
Proarrow.Category.Equipment
2 (Function)
Proarrow.Squares
composeActs
Proarrow.Category.Monoidal.Action
composeCostar
Proarrow.Profunctor.Costar
composeRan
Proarrow.Category.Bicategory.Kan
composeRift
Proarrow.Category.Bicategory.Kan
composeStar
Proarrow.Profunctor.Star
compToCompose
Proarrow.Category.Equipment
compToId
Proarrow.Category.Equipment
comult
Proarrow.Monoid
concatFold
1 (Function)
Proarrow.Category.Monoidal.Strictified
2 (Function)
Proarrow.Category.Bicategory.Strictified
concatMap
Proarrow.Category.Instance.Mat
conjFromCompose
Proarrow.Category.Equipment
conjFromId
Proarrow.Category.Equipment
conjId
1 (Function)
Proarrow.Category.Equipment
2 (Function)
Proarrow.Squares
Conjoint
Proarrow.Category.Equipment
conjToCompose
Proarrow.Category.Equipment
conjToId
Proarrow.Category.Equipment
Cons
1 (Data Constructor)
Proarrow.Category.Monoidal.Strictified
2 (Data Constructor)
Proarrow.Category.Instance.List
3 (Data Constructor)
Proarrow.Profunctor.Fix
4 (Data Constructor)
Proarrow.Category.Instance.Mat
5 (Data Constructor)
Proarrow.Profunctor.Free
CONSTRAINT
Proarrow.Category.Instance.Constraint
copar
Proarrow.Category.Monoidal.Distributive
copar0
Proarrow.Category.Monoidal.Distributive
COPR
Proarrow.Object.BinaryCoproduct
COPROD
Proarrow.Object.BinaryCoproduct
Coprod
1 (Type/Class)
Proarrow.Object.BinaryCoproduct
2 (Data Constructor)
Proarrow.Object.BinaryCoproduct
CoprodDom
Proarrow.Profunctor.Star
COPRODUCT
Proarrow.Category.Instance.Coproduct
coproduct
Proarrow.Profunctor.Coproduct
CoproductColimit
1 (Type/Class)
Proarrow.Category.Colimit
2 (Data Constructor)
Proarrow.Category.Colimit
copy
Proarrow.Category.Instance.Kleisli
Corep
1 (Type/Class)
Proarrow.Profunctor.Corepresentable
2 (Data Constructor)
Proarrow.Profunctor.Corepresentable
corepMap
Proarrow.Profunctor.Corepresentable
Corepresentable
Proarrow.Profunctor.Corepresentable
CorepStar
1 (Type/Class)
Proarrow.Profunctor.Representable
2 (Data Constructor)
Proarrow.Profunctor.Representable
Costar
1 (Type/Class)
Proarrow.Profunctor.Costar
2 (Data Constructor)
Proarrow.Profunctor.Costar
cotabulate
Proarrow.Profunctor.Corepresentable
cotabulatorFactorize
Proarrow.Category.Bicategory.Prof
CotabulatorFactorizer
Proarrow.Category.Bicategory.Prof
counit
1 (Function)
Proarrow.Category.Bicategory
2 (Function)
Proarrow.Monoid
3 (Function)
Proarrow.Adjunction
, Proarrow
4 (Function)
Proarrow.Squares.Limit
counitFromRepCounit
Proarrow.Adjunction
, Proarrow
Coyoneda
1 (Type/Class)
Proarrow.Profunctor.Coyoneda
2 (Data Constructor)
Proarrow.Profunctor.Coyoneda
coyoneda
Proarrow.Profunctor.Coyoneda
CProfunctor
Proarrow.Preorder
CPromonad
Proarrow.Preorder
Curry
1 (Type/Class)
Proarrow.Category.Instance.Cat
2 (Data Constructor)
Proarrow.Category.Instance.Cat
curry
Proarrow.Object.Exponential
curry'
Proarrow.Object.Exponential