proarrow-0: Category theory with a central role for profunctors
User Comments
Contents
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
:
!
$
%
&
*
+
.
/
<
=
?
\
^
|
-
~
All
Index - W
W
1 (Type/Class)
Proarrow.Category.Equipment.BiAsEquipment
2 (Data Constructor)
Proarrow.Category.Equipment.BiAsEquipment
With
1 (Type/Class)
Proarrow.Category.Instance.Linear
2 (Data Constructor)
Proarrow.Category.Instance.Linear
withArr
Proarrow.Preorder.ThinCategory
withAssoc
Proarrow.Category.Bicategory.Strictified
withAssocMult
Proarrow.Category.Instance.Mat
withAssocPlus
Proarrow.Category.Instance.Mat
withCorepObj
Proarrow.Profunctor.Corepresentable
withDist
Proarrow.Category.Instance.Mat
withEq
Proarrow.Preorder.ThinCategory
withIsList2
1 (Function)
Proarrow.Category.Monoidal.Strictified
2 (Function)
Proarrow.Category.Instance.List
withIsNat2
Proarrow.Category.Instance.Simplex
withIsPath
Proarrow.Category.Bicategory.Strictified
withIsPath2
Proarrow.Category.Bicategory.Strictified
withMultNat
Proarrow.Category.Instance.Mat
withMultSucc
Proarrow.Category.Instance.Mat
withMultSym
Proarrow.Category.Instance.Mat
withNat
Proarrow.Category.Instance.Mat
withOb2
1 (Function)
Proarrow.Category.Monoidal
2 (Function)
Proarrow.Category.Bicategory
withObColimit
Proarrow.Category.Equipment.Limit
withObCompanion
Proarrow.Category.Equipment
withObConjoint
Proarrow.Category.Equipment
withObCoprod
Proarrow.Object.BinaryCoproduct
withObLimit
Proarrow.Category.Equipment.Limit
withObProd
Proarrow.Object.BinaryProduct
withPlusNat
Proarrow.Category.Instance.Mat
withPlusSucc
Proarrow.Category.Instance.Mat
withPlusSym
Proarrow.Category.Instance.Mat
withRepObj
Proarrow.Profunctor.Representable
WK
Proarrow.Category.Equipment.BiAsEquipment
WKK
Proarrow.Category.Equipment.BiAsEquipment
Wrapped
1 (Type/Class)
Proarrow.Profunctor.Wrapped
2 (Data Constructor)
Proarrow.Profunctor.Wrapped
Writer
1 (Type/Class)
Proarrow.Promonad.Writer
2 (Data Constructor)
Proarrow.Promonad.Writer