proarrow-0: Category theory with a central role for profunctors

Index - W

W 
1 (Type/Class)Proarrow.Category.Equipment.BiAsEquipment
2 (Data Constructor)Proarrow.Category.Equipment.BiAsEquipment
With 
1 (Type/Class)Proarrow.Category.Instance.Linear
2 (Data Constructor)Proarrow.Category.Instance.Linear
withArrProarrow.Preorder.ThinCategory
withAssocProarrow.Category.Bicategory.Strictified
withAssocMultProarrow.Category.Instance.Mat
withAssocPlusProarrow.Category.Instance.Mat
withCorepObProarrow.Profunctor.Corepresentable
withDistProarrow.Category.Instance.Mat
withEqProarrow.Preorder.ThinCategory
withIsList2 
1 (Function)Proarrow.Category.Monoidal.Strictified
2 (Function)Proarrow.Category.Instance.List
withIsPathProarrow.Category.Bicategory.Strictified
withIsPath2Proarrow.Category.Bicategory.Strictified
withMultNatProarrow.Category.Instance.Mat
withMultSuccProarrow.Category.Instance.Mat
withMultSymProarrow.Category.Instance.Mat
withNatProarrow.Category.Instance.Mat
withOb2 
1 (Function)Proarrow.Category.Monoidal
2 (Function)Proarrow.Category.Bicategory
withObActProarrow.Category.Monoidal.Action
withObCoExpProarrow.Object.Coexponential
withObColimitProarrow.Category.Equipment.Limit
withObCompanionProarrow.Category.Equipment
withObConjointProarrow.Category.Equipment
withObCoprodProarrow.Object.BinaryCoproduct
withObExpProarrow.Object.Exponential
withObLimitProarrow.Category.Equipment.Limit
withObProdProarrow.Object.BinaryProduct
withPlusNatProarrow.Category.Instance.Mat
withPlusSuccProarrow.Category.Instance.Mat
withPlusSymProarrow.Category.Instance.Mat
withRepObProarrow.Profunctor.Representable
WKProarrow.Category.Equipment.BiAsEquipment
WKKProarrow.Category.Equipment.BiAsEquipment
Wrapped 
1 (Type/Class)Proarrow.Profunctor.Wrapped
2 (Data Constructor)Proarrow.Profunctor.Wrapped
Writer 
1 (Type/Class)Proarrow.Promonad.Writer
2 (Data Constructor)Proarrow.Promonad.Writer