proarrow-0: Category theory with a central role for profunctors
User Comments
Contents
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
:
!
$
%
&
*
+
.
/
<
=
?
\
^
|
~
All
Index - L
L
1 (Type/Class)
Proarrow.Category.Instance.List
2 (Type/Class)
Proarrow.Category.Instance.Collage
,
Proarrow.Category.Instance.Coproduct
3 (Type/Class)
Proarrow.Category.Instance.Linear
L2R
Proarrow.Category.Instance.Collage
lam
Proarrow.Helper.CCC
Lan
1 (Type/Class)
Proarrow.Category.Bicategory.Kan
2 (Data Constructor)
Proarrow.Category.Instance.Nat
lan
Proarrow.Category.Bicategory.Kan
lanAlongCompanion
Proarrow.Category.Bicategory.Kan
lanAlongCompanionInv
Proarrow.Category.Bicategory.Kan
lanComonadDelta
Proarrow.Category.Bicategory.Kan
lanComonadEpsilon
Proarrow.Category.Bicategory.Kan
lanUniv
Proarrow.Category.Bicategory.Kan
laxComp
Proarrow.Category.Bicategory.Prof
laxId
Proarrow.Category.Bicategory.Prof
LaxProfunctor
Proarrow.Category.Bicategory.Prof
LCat
Proarrow.Category.Monoidal.Optic
left
1 (Function)
Proarrow.Object.BinaryCoproduct
2 (Function)
Proarrow.Helper.CCC
left'
Proarrow.Object.BinaryCoproduct
leftAction
Proarrow.Category.Bicategory
leftAdjointPreservesColimits
Proarrow.Category.Colimit
leftAdjointPreservesColimitsInv
Proarrow.Category.Colimit
leftAdjunct
1 (Function)
Proarrow.Category.Bicategory
2 (Function)
Proarrow.Adjunction
, Proarrow
LeftKanExtension
Proarrow.Category.Bicategory.Kan
LeftKanLift
Proarrow.Category.Bicategory.Kan
leftUnitor
1 (Function)
Proarrow.Category.Monoidal
2 (Function)
Proarrow.Category.Bicategory
leftUnitor'
1 (Function)
Proarrow.Category.Monoidal
2 (Function)
Proarrow.Category.Bicategory
leftUnitorInv
1 (Function)
Proarrow.Category.Monoidal
2 (Function)
Proarrow.Category.Bicategory
leftUnitorInv'
1 (Function)
Proarrow.Category.Monoidal
2 (Function)
Proarrow.Category.Bicategory
leftUnitorInvWith
Proarrow.Category.Bicategory
leftUnitorProd
Proarrow.Object.BinaryProduct
leftUnitorProdInv
Proarrow.Object.BinaryProduct
leftUnitorWith
Proarrow.Category.Bicategory
Lens
Proarrow.Category.Monoidal.Optic
lft
Proarrow.Object.BinaryCoproduct
lft'
Proarrow.Object.BinaryCoproduct
Lift
1 (Type/Class)
Proarrow.Category.Bicategory.Kan
2 (Type/Class)
Proarrow.Profunctor.Free
lift
1 (Function)
Proarrow.Category.Bicategory.Kan
2 (Function)
Proarrow.Helper.CCC
3 (Function)
Proarrow.Profunctor.Free
lift'
Proarrow.Profunctor.Free
LiftA2
Proarrow.Profunctor.Free
liftA2
Proarrow.Category.Monoidal.Applicative
liftAlongConjoint
Proarrow.Category.Bicategory.Kan
liftAlongConjointInv
Proarrow.Category.Bicategory.Kan
liftComonadDelta
Proarrow.Category.Bicategory.Kan
liftComonadEpsilon
Proarrow.Category.Bicategory.Kan
liftK
Proarrow.Profunctor.Free
liftUniv
Proarrow.Category.Bicategory.Kan
Limit
1 (Type/Class)
Proarrow.Category.Equipment.Limit
2 (Type/Class)
Proarrow.Category.Limit
limit
1 (Function)
Proarrow.Category.Equipment.Limit
2 (Function)
Proarrow.Category.Limit
3 (Function)
Proarrow.Squares.Limit
limitObj
Proarrow.Category.Equipment.Limit
limitUniv
1 (Function)
Proarrow.Category.Equipment.Limit
2 (Function)
Proarrow.Category.Limit
3 (Function)
Proarrow.Squares.Limit
LINEAR
Proarrow.Category.Instance.Linear
Linear
1 (Type/Class)
Proarrow.Category.Instance.Linear
2 (Data Constructor)
Proarrow.Category.Instance.Linear
LIST
Proarrow.Category.Instance.List
List
Proarrow.Category.Instance.List
ListF
Proarrow.Profunctor.Fix
listId
Proarrow.Category.Instance.List
lmap
Proarrow.Core
,
Proarrow.Profunctor
, Proarrow
lower
1 (Function)
Proarrow.Object.Exponential
2 (Function)
Proarrow.Profunctor.Cofree
lower'
Proarrow.Profunctor.Cofree
lrId
Proarrow.Category.Instance.Collage
LT
Proarrow.Category.Instance.Simplex
LTE
Proarrow.Category.Instance.Fin
lte
Proarrow.Category.Instance.Fin