Safe Haskell | None |
---|---|
Language | Haskell2010 |
Proarrow.Category.Bicategory.Relative
Synopsis
- class (Bicategory kk, Ob0 kk a, Ob0 kk e, Ob j, Ob t) => Monad (j :: kk e a) (t :: kk a e) where
- class (Bicategory kk, Ob0 kk a, Ob0 kk d, Ob0 kk e, Ob j, Ob t) => Algebra (j :: kk e a) (t :: kk a e) (car :: kk d e) where
- class (Bicategory kk, Ob0 kk a, Ob0 kk b, Ob0 kk e, Ob j, Ob t) => Opalgebra (j :: kk e a) (t :: kk a e) (car :: kk a b) where
- class (Bicategory kk, Ob0 kk a, Ob0 kk c, Ob0 kk e) => Adjunction (j :: kk e a) (l :: kk a c) (r :: kk c e) where
- class (Bicategory kk, Ob0 kk a, Ob0 kk e, Ob j, Ob t) => Comonad (j :: kk e a) (t :: kk a e) where
- class (Bicategory kk, Ob0 kk a, Ob0 kk d, Ob0 kk e, Ob j, Ob t) => Coalgebra (j :: kk e a) (t :: kk a e) (car :: kk d e) where
- class (Bicategory kk, Ob0 kk a, Ob0 kk b, Ob0 kk e, Ob j, Ob t) => Coopalgebra (j :: kk e a) (t :: kk a e) (car :: kk a b) where
- class (Bicategory kk, Ob0 kk a, Ob0 kk c, Ob0 kk e) => Coadjunction (j :: kk e a) (l :: kk a c) (r :: kk c e) where
Documentation
class (Bicategory kk, Ob0 kk a, Ob0 kk e, Ob j, Ob t) => Monad (j :: kk e a) (t :: kk a e) where Source Comments #
A j
-relative monad t
. Note that j
is the opposite of the usual convention.
See Relative
how to use this with a conjoint and a companion to get the regular definition.
class (Bicategory kk, Ob0 kk a, Ob0 kk d, Ob0 kk e, Ob j, Ob t) => Algebra (j :: kk e a) (t :: kk a e) (car :: kk d e) where Source Comments #
class (Bicategory kk, Ob0 kk a, Ob0 kk b, Ob0 kk e, Ob j, Ob t) => Opalgebra (j :: kk e a) (t :: kk a e) (car :: kk a b) where Source Comments #
class (Bicategory kk, Ob0 kk a, Ob0 kk c, Ob0 kk e) => Adjunction (j :: kk e a) (l :: kk a c) (r :: kk c e) where Source Comments #
class (Bicategory kk, Ob0 kk a, Ob0 kk e, Ob j, Ob t) => Comonad (j :: kk e a) (t :: kk a e) where Source Comments #
class (Bicategory kk, Ob0 kk a, Ob0 kk d, Ob0 kk e, Ob j, Ob t) => Coalgebra (j :: kk e a) (t :: kk a e) (car :: kk d e) where Source Comments #
class (Bicategory kk, Ob0 kk a, Ob0 kk b, Ob0 kk e, Ob j, Ob t) => Coopalgebra (j :: kk e a) (t :: kk a e) (car :: kk a b) where Source Comments #