proarrow-0: Category theory with a central role for profunctors
Safe HaskellNone
LanguageHaskell2010

Proarrow.Profunctor.Constant

Documentation

data Constant c (a :: k) (b :: j) where Source Comments #

Constructors

Constant :: forall {k} {j} (a :: k) (b :: j) c. (Ob a, Ob b) => c -> Constant c a b 

Instances

Instances details
(Monoid c, Monoidal j, Monoidal k) => MonoidalProfunctor (Constant c :: k -> j -> Type) Source Comments # 
Instance details

Defined in Proarrow.Profunctor.Constant

Methods

par0 :: Constant c (Unit :: k) (Unit :: j) Source Comments #

par :: forall (x1 :: k) (x2 :: j) (y1 :: k) (y2 :: j). Constant c x1 x2 -> Constant c y1 y2 -> Constant c (x1 ** y1) (x2 ** y2) Source Comments #

(CategoryOf j, CategoryOf k) => Profunctor (Constant c :: k -> j -> Type) Source Comments # 
Instance details

Defined in Proarrow.Profunctor.Constant

Methods

dimap :: forall (c0 :: k) (a :: k) (b :: j) (d :: j). (c0 ~> a) -> (b ~> d) -> Constant c a b -> Constant c c0 d Source Comments #

(\\) :: forall (a :: k) (b :: j) r. ((Ob a, Ob b) => r) -> Constant c a b -> r Source Comments #

SelfAction k => Cotraversable (Constant c :: k -> k -> Type) Source Comments # 
Instance details

Defined in Proarrow.Profunctor.Constant

Methods

cotraverse :: forall (p :: k +-> k). (DistributiveProfunctor p, Strong k p, SelfAction k) => (p :.: (Constant c :: k -> k -> Type)) :~> ((Constant c :: k -> k -> Type) :.: p) Source Comments #

SelfAction k => Traversable (Constant c :: k -> k -> Type) Source Comments # 
Instance details

Defined in Proarrow.Profunctor.Constant

Methods

traverse :: forall (p :: k +-> k). (DistributiveProfunctor p, Strong k p, SelfAction k) => ((Constant c :: k -> k -> Type) :.: p) :~> (p :.: (Constant c :: k -> k -> Type)) Source Comments #

(Monoid c, CategoryOf k) => Promonad (Constant c :: k -> k -> Type) Source Comments # 
Instance details

Defined in Proarrow.Profunctor.Constant

Methods

id :: forall (a :: k). Ob a => Constant c a a Source Comments #

(.) :: forall (b :: k) (c0 :: k) (a :: k). Constant c b c0 -> Constant c a b -> Constant c a c0 Source Comments #