proarrow

Index - A

AProarrow.Category.Instance.Ap
absurdLProarrow.Category.Instance.Fin
absurdRProarrow.Category.Instance.Fin
ActProarrow.Category.Monoidal.Action
act 
1 (Function)Proarrow.Category.Bicategory.Relative
2 (Function)Proarrow.Category.Monoidal.Action
actionProarrow.Monoid, Proarrow
ActIsCoprodProarrow.Object.BinaryCoproduct
ActIsProdProarrow.Object.BinaryProduct
ActIsProd3Proarrow.Object.BinaryProduct
ActIsTensorProarrow.Category.Monoidal.Action
ActIsTensor3Proarrow.Category.Monoidal.Action
adjFromConverseProarrow.Category.Instance.Rel
adjToConverseProarrow.Category.Instance.Rel
Adjunction 
1 (Type/Class)Proarrow.Category.Bicategory
2 (Type/Class)Proarrow.Category.Bicategory.Relative
3 (Type/Class)Proarrow.Adjunction
Algebra 
1 (Type/Class)Proarrow.Category.Bicategory.Relative
2 (Type/Class)Proarrow.Category.Monoidal.Optic
algebraProarrow.Category.Monoidal.Optic
AlgebraicLensProarrow.Category.Monoidal.Optic
AllProarrow.Category.Instance.Free
altProarrow.Category.Monoidal.Applicative
AlternativeProarrow.Category.Monoidal.Applicative
anaProarrow.Profunctor.Fix
AnyProarrow.Core
anyArr 
1 (Function)Proarrow.Category.Enriched.ThinCategory
2 (Function)Proarrow.Category.Instance.Discrete
APProarrow.Category.Instance.Ap
Ap 
1 (Type/Class)Proarrow.Profunctor.Free
2 (Type/Class)Proarrow.Category.Instance.Ap
3 (Data Constructor)Proarrow.Category.Instance.Ap
ap 
1 (Function)Proarrow.Object.Exponential
2 (Function)Proarrow.Category.Monoidal.Applicative
appProarrow.Category.Instance.Mat
append 
1 (Function)Proarrow.Category.Bicategory.Strictified
2 (Function)Proarrow.Category.Instance.Mat
ApplicativeProarrow.Category.Monoidal.Applicative
ApplyProarrow.Object.Exponential
applyProarrow.Object.Exponential
applySAProarrow.Object.Dual
ArrProarrow.Category.Instance.Discrete
arr 
1 (Function)Proarrow.Core
2 (Function)Proarrow.Category.Enriched.ThinCategory
3 (Function)Proarrow.Category.Instance.Kleisli
arrCoprodProarrow.Category.Instance.Collage
ArrowIsIdProarrow.Category.Enriched.ThinCategory
arrowIsIdProofProarrow.Category.Enriched.ThinCategory
asCocatProarrow.Category.Instance.Linear
asImplicationProarrow.Category.Instance.Rel
asObj 
1 (Function)Proarrow.Category.Bicategory.Strictified
2 (Function)Proarrow.Category.Monoidal.Strictified
AssertEqProarrow.Tools.Laws
Assoc 
1 (Type/Class)Proarrow.Category.Bicategory.Strictified
2 (Type/Class)Proarrow.Category.Monoidal.Strictified
3 (Type/Class)Proarrow.Category.Instance.Simplex
AssociatorProarrow.Category.Monoidal
associator 
1 (Function)Proarrow.Category.Bicategory
2 (Function)Proarrow.Category.Monoidal
associator' 
1 (Function)Proarrow.Category.Bicategory
2 (Function)Proarrow.Category.Monoidal
AssociatorInvProarrow.Category.Monoidal
associatorInv 
1 (Function)Proarrow.Category.Bicategory
2 (Function)Proarrow.Category.Monoidal
associatorInv' 
1 (Function)Proarrow.Category.Bicategory
2 (Function)Proarrow.Category.Monoidal
associatorProdProarrow.Object.BinaryProduct
associatorProdInvProarrow.Object.BinaryProduct
asSPathProarrow.Category.Bicategory.Strictified