Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- class (Profunctor p, Profunctor q) => Adjunction (p :: PRO k j) (q :: PRO j k) where
- unit' :: forall {j} {i} (p :: PRO j i) (q :: PRO i j) (a :: i) (b :: i). Adjunction p q => (a ~> b) -> (q :.: p) a b
- leftAdjunct :: forall {k} {j} (l :: PRO k j) r (a :: j) (b :: k). (Adjunction l r, Representable l, Representable r, Ob a) => ((l % a) ~> b) -> r a b
- rightAdjunct :: forall {k} {j} (l :: PRO k j) r (a :: j) (b :: k). (Adjunction l r, Representable l, Representable r, Ob b) => r a b -> (l % a) ~> b
- unitFromRepUnit :: forall {i} {j} (l :: i +-> j) (r :: j +-> i) (a :: i). (Representable l, Representable r, Ob a) => (a ~> (r % (l % a))) -> (r :.: l) a a
- counitFromRepCounit :: forall {j} {k1} (l :: j +-> k1) (r :: k1 +-> j). (Representable l, Representable r) => (forall (c :: k1). Ob c => (l % (r % c)) ~> c) -> (l :.: r) :~> ((~>) :: CAT k1)
Documentation
class (Profunctor p, Profunctor q) => Adjunction (p :: PRO k j) (q :: PRO j k) where Source Comments #
Adjunctions between two profunctors.
Instances
Adjunction Free Forget Source Comments # | |
Representable f => Adjunction (f :: k +-> j) (RepCostar f :: k -> j -> Type) Source Comments # | |
CategoryOf k => Adjunction (Id :: k -> k -> Type) (Id :: k -> k -> Type) Source Comments # | |
Adjunction (Star ((,) a) :: Type -> Type -> Type) (Star ((->) a) :: Type -> Type -> Type) Source Comments # | |
(Functor f, Functor g, Adjunction (Star f) (Star g)) => Adjunction (Costar f :: k -> j -> Type) (Costar g :: j -> k -> Type) Source Comments # | |
Functor f => Adjunction (Star f :: k -> j -> Type) (Costar f :: j -> k -> Type) Source Comments # | |
(Adjunction l1 r1, Adjunction l2 r2) => Adjunction (l1 :.: l2 :: i -> k -> Type) (r2 :.: r1 :: k -> i -> Type) Source Comments # | |
Promonad p => Adjunction (KleisliFree p :: KLEISLI p -> k -> Type) (KleisliForget p :: k -> KLEISLI p -> Type) Source Comments # | |
Defined in Proarrow.Category.Instance.Kleisli unit :: forall (a :: k). Ob a => (KleisliForget p :.: KleisliFree p) a a Source Comments # counit :: (KleisliFree p :.: KleisliForget p) :~> ((~>) :: CAT (KLEISLI p)) Source Comments # | |
HasFree ob => Adjunction (FreeSub ob :: SUBCAT ob -> k -> Type) (Forget ob :: k -> SUBCAT ob -> Type) Source Comments # | |
Adjunction q p => Adjunction (Op p :: OPPOSITE k -> OPPOSITE j -> Type) (Op q :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
HasCofree ob => Adjunction (Forget ob :: k -> SUBCAT ob -> Type) (CofreeSub ob :: SUBCAT ob -> k -> Type) Source Comments # | |
Profunctor j => Adjunction (Star ((:.:) j :: (i2 +-> k) -> i1 -> i2 -> Type) :: (i1 -> i2 -> Type) -> (i2 +-> k) -> Type) (Star (Rift ('OP j) :: (i2 +-> i1) -> k -> i2 -> Type) :: (k -> i2 -> Type) -> (i2 +-> i1) -> Type) Source Comments # | |
Defined in Proarrow.Profunctor.Rift unit :: forall (a :: i2 +-> k). Ob a => (Star (Rift ('OP j) :: (i2 +-> i1) -> k -> i2 -> Type) :.: Star ((:.:) j :: (i2 +-> k) -> i1 -> i2 -> Type)) a a Source Comments # counit :: (Star ((:.:) j :: (i2 +-> k) -> i1 -> i2 -> Type) :.: Star (Rift ('OP j) :: (i2 +-> i1) -> k -> i2 -> Type)) :~> ((~>) :: CAT (i1 -> i2 -> Type)) Source Comments # | |
Profunctor j2 => Adjunction (Star (Precompose j2 :: (j1 +-> k) -> k -> i -> Type) :: (k -> i -> Type) -> (j1 +-> k) -> Type) (Star (Ran ('OP j2) :: (i +-> k) -> k -> j1 -> Type) :: (k -> j1 -> Type) -> (i +-> k) -> Type) Source Comments # | |
Defined in Proarrow.Profunctor.Ran unit :: forall (a :: j1 +-> k). Ob a => (Star (Ran ('OP j2) :: (i +-> k) -> k -> j1 -> Type) :.: Star (Precompose j2 :: (j1 +-> k) -> k -> i -> Type)) a a Source Comments # counit :: (Star (Precompose j2 :: (j1 +-> k) -> k -> i -> Type) :.: Star (Ran ('OP j2) :: (i +-> k) -> k -> j1 -> Type)) :~> ((~>) :: CAT (k -> i -> Type)) Source Comments # |
unit' :: forall {j} {i} (p :: PRO j i) (q :: PRO i j) (a :: i) (b :: i). Adjunction p q => (a ~> b) -> (q :.: p) a b Source Comments #
leftAdjunct :: forall {k} {j} (l :: PRO k j) r (a :: j) (b :: k). (Adjunction l r, Representable l, Representable r, Ob a) => ((l % a) ~> b) -> r a b Source Comments #
rightAdjunct :: forall {k} {j} (l :: PRO k j) r (a :: j) (b :: k). (Adjunction l r, Representable l, Representable r, Ob b) => r a b -> (l % a) ~> b Source Comments #
unitFromRepUnit :: forall {i} {j} (l :: i +-> j) (r :: j +-> i) (a :: i). (Representable l, Representable r, Ob a) => (a ~> (r % (l % a))) -> (r :.: l) a a Source Comments #
counitFromRepCounit :: forall {j} {k1} (l :: j +-> k1) (r :: k1 +-> j). (Representable l, Representable r) => (forall (c :: k1). Ob c => (l % (r % c)) ~> c) -> (l :.: r) :~> ((~>) :: CAT k1) Source Comments #
Orphan instances
(MonoidalProfunctor r, Adjunction l r, Representable l, Representable r, Monoidal j, Monoidal k) => MonoidalProfunctor (RepCostar l :: k -> j -> Type) Source Comments # | |
Adjunction p q => Promonad (q :.: p :: k -> k -> Type) Source Comments # | |
Adjunction p q => Procomonad (p :.: q :: i -> i -> Type) Source Comments # | |