Safe Haskell | None |
---|---|
Language | Haskell2010 |
Proarrow.Category
Documentation
class Promonad ((~>) :: CAT k) => CategoryOf k Source Comments #
Instances
CategoryOf Nat Source Comments # | The category of qubits, to implement ZX calculus from quantum computing. | ||||||||
Defined in Proarrow.Category.Instance.ZX Associated Types
| |||||||||
CategoryOf BOOL Source Comments # | The category of 2 objects and one arrow between them, a.k.a. the walking arrow. | ||||||||
Defined in Proarrow.Category.Instance.Bool Associated Types
| |||||||||
CategoryOf KIND Source Comments # | The category of categories and profunctors between them. | ||||||||
Defined in Proarrow.Category.Instance.Cat Associated Types
| |||||||||
CategoryOf CONSTRAINT Source Comments # | The category of type class constraints. An arrow from constraint a to constraint b | means that a implies b, i.e. if a holds then b holds. | ||||||||
Defined in Proarrow.Category.Instance.Constraint Associated Types
| |||||||||
CategoryOf LINEAR Source Comments # | Category of linear functions. | ||||||||
Defined in Proarrow.Category.Instance.Linear | |||||||||
CategoryOf POINTED Source Comments # | The category of types with an added point and point-preserving morphisms. | ||||||||
Defined in Proarrow.Category.Instance.PointedHask | |||||||||
CategoryOf Nat Source Comments # | The (augmented) simplex category is the category of finite ordinals and order preserving maps. | ||||||||
Defined in Proarrow.Category.Instance.Simplex Associated Types
| |||||||||
CategoryOf VOID Source Comments # | The category with no objects, the initial category. | ||||||||
Defined in Proarrow.Category.Instance.Zero Associated Types
| |||||||||
CategoryOf () Source Comments # | The category with one object, the terminal category. | ||||||||
Defined in Proarrow.Category.Instance.Unit Associated Types
| |||||||||
CategoryOf Type Source Comments # | The category of Haskell types (a.k.a | ||||||||
Defined in Proarrow.Core Associated Types
| |||||||||
CategoryOf (FIN n) Source Comments # | The (thin) category of finite ordinals. An arrow from a to b means that a is less than or equal to b. | ||||||||
Defined in Proarrow.Category.Instance.Fin | |||||||||
TracedMonoidal k => CategoryOf (INT k) Source Comments # | The Int construction, a.k.a. the geometry of interaction, the free compact closed category on a traced monoidal category. | ||||||||
Defined in Proarrow.Category.Instance.IntConstruction Associated Types
| |||||||||
Num a => CategoryOf (MatK a) Source Comments # | The category of matrices with entries in a type | ||||||||
Defined in Proarrow.Category.Instance.Mat | |||||||||
PreorderOf k => CategoryOf (POCATK k) Source Comments # | The preorder as a category. | ||||||||
CategoryOf k => CategoryOf (REV k) Source Comments # | The reverse of the category of | ||||||||
Defined in Proarrow.Category.Monoidal.Rev | |||||||||
CategoryOf k => CategoryOf (OPPOSITE k) Source Comments # | The opposite category of the category of | ||||||||
Defined in Proarrow.Category.Opposite | |||||||||
CategoryOf k => CategoryOf (COPROD k) Source Comments # | The same category as the category of | ||||||||
Defined in Proarrow.Object.BinaryCoproduct | |||||||||
CategoryOf k => CategoryOf (PROD k) Source Comments # | The same category as the category of | ||||||||
Defined in Proarrow.Object.BinaryProduct | |||||||||
CategoryOf k => CategoryOf (LIST k) Source Comments # | The category of lists of arrows. | ||||||||
Defined in Proarrow.Profunctor.List | |||||||||
Monoidal k => CategoryOf [k] Source Comments # | The strictified monoidal category, making the unitors and associators identities. | ||||||||
Defined in Proarrow.Category.Monoidal.Strictified Associated Types
| |||||||||
CategoryOf (PROFK j k) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||
(CategoryOf j, CategoryOf k) => CategoryOf (COPRODUCT j k) Source Comments # | The coproduct of two categories. | ||||||||
Defined in Proarrow.Category.Instance.Coproduct | |||||||||
Promonad p => CategoryOf (KLEISLI p) Source Comments # | Every promonad makes a category. | ||||||||
Defined in Proarrow.Category.Instance.Kleisli | |||||||||
CategoryOf (NatK j k) Source Comments # | The category of functors and natural transformations. | ||||||||
Defined in Proarrow.Category.Instance.Nat | |||||||||
CategoryOf k => CategoryOf (SUBCAT ob) Source Comments # | The subcategory with objects with instances of the given constraint | ||||||||
Defined in Proarrow.Category.Instance.Sub | |||||||||
(j ~ '(), k ~ '()) => CategoryOf (Unit j k) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Terminal | |||||||||
CategoryOf (j +-> k) Source Comments # | The category of profunctors and natural transformations between them. | ||||||||
Defined in Proarrow.Category.Instance.Prof | |||||||||
(CategoryOf k1, CategoryOf k2) => CategoryOf (k1, k2) Source Comments # | The product of two categories. | ||||||||
Defined in Proarrow.Category.Instance.Product | |||||||||
CategoryOf (k1 -> k2 -> k3 -> k4 -> Type) Source Comments # | The category of functors with target category k2 -> k3 -> k4 -> Type. | ||||||||
Defined in Proarrow.Category.Instance.Nat | |||||||||
CategoryOf (k1 -> k2 -> k3 -> Type) Source Comments # | The category of functors with target category | ||||||||
Defined in Proarrow.Category.Instance.Nat | |||||||||
CategoryOf (k1 -> Type) Source Comments # | The category of functors with target category Hask. | ||||||||
Defined in Proarrow.Category.Instance.Nat | |||||||||
(CategoryOf k, Ob i, Ob j) => CategoryOf (PLAINK k i j) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.CategoryAsBi | |||||||||
CategoryOf k => CategoryOf (MonK k i j) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.MonoidalAsBi | |||||||||
Profunctor p => CategoryOf (COLLAGE p) Source Comments # | The collage of a profunctor. | ||||||||
Defined in Proarrow.Category.Instance.Collage | |||||||||
(Structure str, Profunctor p) => CategoryOf (FREE str p) Source Comments # | |||||||||
Defined in Proarrow.Category.Instance.Free | |||||||||
(Bicategory kk, Ob0 kk k) => CategoryOf (ENDO kk k) Source Comments # | |||||||||
Defined in Proarrow.Category.Monoidal.Endo | |||||||||
CategoryOf (DiscreteK ob j k) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Bidiscrete Associated Types
| |||||||||
CategoryOf (kk j k2) => CategoryOf (COK kk j k2) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Co | |||||||||
CategoryOf (kk k2 j) => CategoryOf (OPK kk j k2) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Op | |||||||||
(CategoryOf (kk j k2), Bicategory kk) => CategoryOf (Path kk j k2) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Strictified Associated Types
| |||||||||
MonoidalAction m k => CategoryOf (STT m k i j) Source Comments # | |||||||||
Defined in Proarrow.Category.Equipment.Stateful | |||||||||
IsChart m c d => CategoryOf (CHART m c d) Source Comments # | The category of charts. | ||||||||
Defined in Proarrow.Category.Monoidal.Optic | |||||||||
IsOptic w c d => CategoryOf (OPTIC w c d) Source Comments # | The category of optics. | ||||||||
Defined in Proarrow.Category.Monoidal.Optic | |||||||||
CategoryOf (kk i j) => CategoryOf (HK kk i j) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Hom | |||||||||
CategoryOf (kk i j) => CategoryOf (SUBCAT tag kk i j) Source Comments # | The subcategory with objects with instances of the given constraint `IsOb tag`. | ||||||||
Defined in Proarrow.Category.Bicategory.Sub | |||||||||
CategoryOf (kk i j) => CategoryOf (WKK kk i j) Source Comments # | |||||||||
Defined in Proarrow.Category.Equipment.BiAsEquipment | |||||||||
CategoryOf (kk i j) => CategoryOf (QKK kk i j) Source Comments # | |||||||||
Defined in Proarrow.Category.Equipment.Quintet | |||||||||
(CategoryOf (jj (Fst ik) (Fst jl)), CategoryOf (kk (Snd ik) (Snd jl))) => CategoryOf (PRODK jj kk ik jl) Source Comments # | |||||||||
Defined in Proarrow.Category.Bicategory.Product |
dimapDefault :: forall {k} p (c :: k) (a :: k) (b :: k) (d :: k). Promonad p => p c a -> p b d -> p a b -> p c d Source Comments #