proarrow-0: Category theory with a central role for profunctors

Index - R

R 
1 (Type/Class)Proarrow.Category.Monoidal.Rev
2 (Type/Class)Proarrow.Category.Instance.Collage, Proarrow.Category.Instance.Coproduct
Ran 
1 (Type/Class)Proarrow.Category.Bicategory.Kan
2 (Data Constructor)Proarrow.Category.Instance.Nat
3 (Type/Class)Proarrow.Profunctor.Ran
4 (Data Constructor)Proarrow.Profunctor.Ran
ranProarrow.Category.Bicategory.Kan
ranAlongConjointProarrow.Category.Bicategory.Kan
ranAlongConjointInvProarrow.Category.Bicategory.Kan
ranComposeProarrow.Profunctor.Ran
ranComposeInvProarrow.Profunctor.Ran
ranHomProarrow.Profunctor.Ran
ranHomInvProarrow.Profunctor.Ran
ranMonadEtaProarrow.Category.Bicategory.Kan
ranMonadMuProarrow.Category.Bicategory.Kan
ranUnivProarrow.Category.Bicategory.Kan
RCatProarrow.Category.Monoidal.Optic
Reader 
1 (Type/Class)Proarrow.Promonad.Reader
2 (Data Constructor)Proarrow.Promonad.Reader
rebaseLanProarrow.Category.Bicategory.Kan
rebaseLiftProarrow.Category.Bicategory.Kan
rebaseRanProarrow.Category.Bicategory.Kan
rebaseRiftProarrow.Category.Bicategory.Kan
reparamProarrow.Category.Equipment.Quintet
RepCostar 
1 (Type/Class)Proarrow.Profunctor.Representable
2 (Data Constructor)Proarrow.Profunctor.Representable
ReplaceProarrow.Category.Monoidal.Optic
ReplacingProarrow.Category.Monoidal.Optic
Replicate 
1 (Type/Class)Proarrow.Category.Instance.Simplex
2 (Data Constructor)Proarrow.Category.Instance.Simplex
repMapProarrow.Profunctor.Representable
repObjProarrow.Profunctor.Representable
RepresentableProarrow.Profunctor.Representable
RepStar 
1 (Type/Class)Proarrow.Profunctor.Representable
2 (Data Constructor)Proarrow.Profunctor.Representable
RetractProarrow.Profunctor.Free
retractProarrow.Profunctor.Free
retract'Proarrow.Profunctor.Free
retractApProarrow.Profunctor.Free
retractKProarrow.Profunctor.Free
RetroSq 
1 (Type/Class)Proarrow.Category.Equipment
2 (Data Constructor)Proarrow.Category.Equipment
REVProarrow.Category.Monoidal.Rev
Rev 
1 (Type/Class)Proarrow.Category.Monoidal.Rev
2 (Data Constructor)Proarrow.Category.Monoidal.Rev
RewriteProarrow.Category.Instance.Free
rewriteAfterConsProarrow.Category.Instance.Free
rgtProarrow.Object.BinaryCoproduct
rgt'Proarrow.Object.BinaryCoproduct
Rift 
1 (Type/Class)Proarrow.Category.Bicategory.Kan
2 (Type/Class)Proarrow.Profunctor.Rift
3 (Data Constructor)Proarrow.Profunctor.Rift
riftProarrow.Category.Bicategory.Kan
riftAlongCompanionProarrow.Category.Bicategory.Kan
riftAlongCompanionInvProarrow.Category.Bicategory.Kan
riftComposeProarrow.Profunctor.Rift
riftComposeInvProarrow.Profunctor.Rift
riftMonadEtaProarrow.Category.Bicategory.Kan
riftMonadMuProarrow.Category.Bicategory.Kan
riftUnivProarrow.Category.Bicategory.Kan
right 
1 (Function)Proarrow.Object.BinaryCoproduct
2 (Function)Proarrow.Helper.CCC
right'Proarrow.Object.BinaryCoproduct
rightActionProarrow.Category.Bicategory
rightAdjointPreservesLimits 
1 (Function)Proarrow.Category.Limit
2 (Function)Proarrow.Squares.Limit
rightAdjointPreservesLimitsInv 
1 (Function)Proarrow.Category.Equipment.Limit
2 (Function)Proarrow.Category.Limit
3 (Function)Proarrow.Squares.Limit
rightAdjunct 
1 (Function)Proarrow.Category.Bicategory
2 (Function)Proarrow.Adjunction, Proarrow
RightKanExtensionProarrow.Category.Bicategory.Kan
RightKanLiftProarrow.Category.Bicategory.Kan
rightUnitor 
1 (Function)Proarrow.Category.Monoidal
2 (Function)Proarrow.Category.Bicategory
rightUnitor' 
1 (Function)Proarrow.Category.Monoidal
2 (Function)Proarrow.Category.Bicategory
rightUnitorInv 
1 (Function)Proarrow.Category.Monoidal
2 (Function)Proarrow.Category.Bicategory
rightUnitorInv' 
1 (Function)Proarrow.Category.Monoidal
2 (Function)Proarrow.Category.Bicategory
rightUnitorInvWithProarrow.Category.Bicategory
rightUnitorProdProarrow.Object.BinaryProduct
rightUnitorProdInvProarrow.Object.BinaryProduct
rightUnitorWithProarrow.Category.Bicategory
rmapProarrow.Core, Proarrow.Profunctor, Proarrow
runKleisliProarrow.Category.Instance.Kleisli
runRan 
1 (Function)Proarrow.Category.Instance.Nat
2 (Function)Proarrow.Profunctor.Ran
runRiftProarrow.Profunctor.Rift