proarrow-0: Category theory with a central role for profunctors

Index - M

MProarrow.Category.Instance.Mat
mapProarrow.Functor, Proarrow
mapCompanionProarrow.Category.Equipment
mapCompanionSPathProarrow.Category.Equipment
mapConjointProarrow.Category.Equipment
mapConjointSPathProarrow.Category.Equipment
mapLanProarrow.Category.Bicategory.Kan
mapLiftProarrow.Category.Bicategory.Kan
mappendProarrow.Monoid
mappendActProarrow.Monoid
mapRanProarrow.Category.Bicategory.Kan
mapRiftProarrow.Category.Bicategory.Kan
Mat 
1 (Type/Class)Proarrow.Category.Instance.Mat
2 (Data Constructor)Proarrow.Category.Instance.Mat
matProarrow.Category.Instance.Mat
matIdProarrow.Category.Instance.Mat
MatKProarrow.Category.Instance.Mat
maybeLiftsSemigroupProarrow.Category.Instance.Constraint
MDKProarrow.Category.Enriched
memptyProarrow.Monoid
memptyActProarrow.Monoid
MixedOpticProarrow.Category.Monoidal.Optic
MKProarrow.Category.Bicategory.MonoidalAsBi
mkAlgebraicLensProarrow.Category.Monoidal.Optic
mkConsProarrow.Category.Instance.List
mkEndoProarrow.Category.Monoidal.Endo
mkExponentialProarrow.Object.Exponential
mkLensProarrow.Category.Monoidal.Optic
mkPrismProarrow.Category.Monoidal.Optic
mkYonedaProarrow.Profunctor.Yoneda
ModuleObjectProarrow.Monoid
Mon2 
1 (Type/Class)Proarrow.Category.Bicategory.MonoidalAsBi
2 (Data Constructor)Proarrow.Category.Bicategory.MonoidalAsBi
MonadProarrow.Category.Bicategory
MONADKProarrow.Category.Enriched
MonKProarrow.Category.Bicategory.MonoidalAsBi
MonoidProarrow.Monoid
MonoidalProarrow.Category.Monoidal
MonoidalActionProarrow.Category.Monoidal.Action
MonoidalProfunctorProarrow.Category.Monoidal
muProarrow.Category.Bicategory
multDayExpProarrow.Profunctor.Day
multiplicatorProarrow.Category.Monoidal.Action
multiplicatorInvProarrow.Category.Monoidal.Action
mupdateProarrow.Category.Monoidal.Optic