proarrow-0: Category theory with a central role for profunctors
User Comments
Contents
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
:
!
$
%
&
*
+
.
/
<
=
?
\
^
|
~
All
Index - H
hArr
1 (Function)
Proarrow.Category.Equipment
2 (Function)
Proarrow.Squares
HasArrow
Proarrow.Preorder.ThinCategory
HasArrow'
Proarrow.Preorder.ThinCategory
HasArrowCollage
Proarrow.Category.Instance.Collage
HasBinaryCoproducts
Proarrow.Object.BinaryCoproduct
HasBinaryProducts
Proarrow.Object.BinaryProduct
HasCofree
Proarrow.Profunctor.Cofree
HasColimits
1 (Type/Class)
Proarrow.Category.Equipment.Limit
2 (Type/Class)
Proarrow.Category.Colimit
HasCompanions
Proarrow.Category.Equipment
HasCoproducts
Proarrow.Object.BinaryCoproduct
HasFree
Proarrow.Profunctor.Free
HasFreeK
Proarrow.Profunctor.Free
HasInitialObject
Proarrow.Object.Initial
Hask
Proarrow.Category.Instance.Hask
HaskLan
Proarrow.Category.Instance.Nat
HaskRan
Proarrow.Category.Instance.Nat
HasLimits
1 (Type/Class)
Proarrow.Category.Equipment.Limit
2 (Type/Class)
Proarrow.Category.Limit
HasProducts
Proarrow.Object.BinaryProduct
HasTerminalObject
Proarrow.Object.Terminal
hId
1 (Function)
Proarrow.Category.Equipment
2 (Function)
Proarrow.Squares
HK
Proarrow.Category.Bicategory.Hom
Hom
1 (Type/Class)
Proarrow.Category.Limit
2 (Data Constructor)
Proarrow.Category.Limit
3 (Data Constructor)
Proarrow.Category.Bicategory.Hom
HomK
Proarrow.Category.Bicategory.Hom
HomW
1 (Type/Class)
Proarrow.Category.Bicategory.Hom
2 (Data Constructor)
Proarrow.Category.Bicategory.Hom
hylo
Proarrow.Profunctor.Fix