module Proarrow.Category.Instance.Sub where
import Data.Kind (Constraint, Type)
import Proarrow.Category.Monoidal (Monoidal (..), MonoidalProfunctor (..), SymMonoidal (..))
import Proarrow.Category.Monoidal.Action (MonoidalAction (..), Strong (..))
import Proarrow.Core (CAT, CategoryOf (..), Is, OB, Profunctor (..), Promonad (..), UN)
import Proarrow.Monoid (CopyDiscard (..))
import Proarrow.Profunctor.Representable (Representable (..))
type SUBCAT :: forall {k}. OB k -> Type
type data SUBCAT (ob :: OB k) = SUB k
type instance UN SUB (SUB k) = k
type Sub :: CAT k -> CAT (SUBCAT (ob :: OB k))
data Sub p a b where
Sub :: (ob a, ob b) => {forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
Sub p (SUB a) (SUB b) -> p a b
unSub :: p a b} -> Sub p (SUB a :: SUBCAT ob) (SUB b)
instance (Profunctor p) => Profunctor (Sub p) where
dimap :: forall (c :: SUBCAT ob) (a :: SUBCAT ob) (b :: SUBCAT ob)
(d :: SUBCAT ob).
(c ~> a) -> (b ~> d) -> Sub p a b -> Sub p c d
dimap (Sub a ~> b
l) (Sub a ~> b
r) (Sub p a b
p) = p a b -> Sub p (SUB a) (SUB b)
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub ((a ~> a) -> (b ~> b) -> p a b -> p a b
forall (c :: k) (a :: k) (b :: k) (d :: k).
(c ~> a) -> (b ~> d) -> p a b -> p c d
forall {j} {k} (p :: j +-> k) (c :: k) (a :: k) (b :: j) (d :: j).
Profunctor p =>
(c ~> a) -> (b ~> d) -> p a b -> p c d
dimap a ~> b
a ~> a
l a ~> b
b ~> b
r p a b
p)
(Ob a, Ob b) => r
r \\ :: forall (a :: SUBCAT ob) (b :: SUBCAT ob) r.
((Ob a, Ob b) => r) -> Sub p a b -> r
\\ Sub p a b
p = r
(Ob a, Ob b) => r
(Ob a, Ob b) => r
r ((Ob a, Ob b) => r) -> p a b -> r
forall (a :: k) (b :: k) r. ((Ob a, Ob b) => r) -> p a b -> r
forall {j} {k} (p :: j +-> k) (a :: k) (b :: j) r.
Profunctor p =>
((Ob a, Ob b) => r) -> p a b -> r
\\ p a b
p
instance (Promonad p) => Promonad (Sub p) where
id :: forall (a :: SUBCAT ob). Ob a => Sub p a a
id = p (UN SUB a) (UN SUB a) -> Sub p (SUB (UN SUB a)) (SUB (UN SUB a))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub p (UN SUB a) (UN SUB a)
forall (a :: k). Ob a => p a a
forall {k} (p :: k +-> k) (a :: k). (Promonad p, Ob a) => p a a
id
Sub p a b
f . :: forall (b :: SUBCAT ob) (c :: SUBCAT ob) (a :: SUBCAT ob).
Sub p b c -> Sub p a b -> Sub p a c
. Sub p a b
g = p a b -> Sub p (SUB a) (SUB b)
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (p a b
f p a b -> p a a -> p a b
forall (b :: k) (c :: k) (a :: k). p b c -> p a b -> p a c
forall {k} (p :: k +-> k) (b :: k) (c :: k) (a :: k).
Promonad p =>
p b c -> p a b -> p a c
. p a a
p a b
g)
instance (CategoryOf k) => CategoryOf (SUBCAT (ob :: OB k)) where
type (~>) = Sub (~>)
type Ob (a :: SUBCAT ob) = (Is SUB a, Ob (UN SUB a), ob (UN SUB a))
type On :: (k -> Constraint) -> forall (ob :: OB k) -> SUBCAT ob -> Constraint
class (c (UN SUB a)) => (c `On` ob) a
instance (c (UN SUB a)) => (c `On` ob) a
class (CategoryOf k, ob (a ** b)) => IsObMult (ob :: OB k) a b
instance (CategoryOf k, ob (a ** b)) => IsObMult (ob :: OB k) a b
instance (MonoidalProfunctor p, SubMonoidal ob) => MonoidalProfunctor (Sub p :: CAT (SUBCAT (ob :: OB k))) where
par0 :: Sub p Unit Unit
par0 = p Unit Unit -> Sub p (SUB Unit) (SUB Unit)
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub p Unit Unit
forall {j} {k} (p :: j +-> k). MonoidalProfunctor p => p Unit Unit
par0
Sub p a b
f par :: forall (x1 :: SUBCAT ob) (x2 :: SUBCAT ob) (y1 :: SUBCAT ob)
(y2 :: SUBCAT ob).
Sub p x1 x2 -> Sub p y1 y2 -> Sub p (x1 ** y1) (x2 ** y2)
`par` Sub p a b
g = p (a ** a) (b ** b) -> Sub p (SUB (a ** a)) (SUB (b ** b))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (p a b
f p a b -> p a b -> p (a ** a) (b ** b)
forall (x1 :: k) (x2 :: k) (y1 :: k) (y2 :: k).
p x1 x2 -> p y1 y2 -> p (x1 ** y1) (x2 ** y2)
forall {j} {k} (p :: j +-> k) (x1 :: k) (x2 :: j) (y1 :: k)
(y2 :: j).
MonoidalProfunctor p =>
p x1 x2 -> p y1 y2 -> p (x1 ** y1) (x2 ** y2)
`par` p a b
g)
class (Monoidal k, ob Unit, forall a b. (ob a, ob b) => IsObMult ob a b) => SubMonoidal (ob :: OB k)
instance (Monoidal k, ob Unit, forall a b. (ob a, ob b) => IsObMult ob a b) => SubMonoidal (ob :: OB k)
instance (SubMonoidal ob) => Monoidal (SUBCAT (ob :: OB k)) where
type Unit = SUB Unit
type a ** b = SUB (UN SUB a ** UN SUB b)
withOb2 :: forall (a :: SUBCAT ob) (b :: SUBCAT ob) r.
(Ob a, Ob b) =>
(Ob (a ** b) => r) -> r
withOb2 @(SUB a) @(SUB b) Ob (a ** b) => r
r = forall k (a :: k) (b :: k) r.
(Monoidal k, Ob a, Ob b) =>
(Ob (a ** b) => r) -> r
withOb2 @k @a @b r
Ob (UN SUB a ** UN SUB b) => r
Ob (a ** b) => r
r
leftUnitor :: forall (a :: SUBCAT ob). Ob a => (Unit ** a) ~> a
leftUnitor = ((Unit ** UN SUB a) ~> UN SUB a)
-> Sub (~>) (SUB (Unit ** UN SUB a)) (SUB (UN SUB a))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (Unit ** UN SUB a) ~> UN SUB a
forall (a :: k). Ob a => (Unit ** a) ~> a
forall k (a :: k). (Monoidal k, Ob a) => (Unit ** a) ~> a
leftUnitor
leftUnitorInv :: forall (a :: SUBCAT ob). Ob a => a ~> (Unit ** a)
leftUnitorInv = (UN SUB a ~> (Unit ** UN SUB a))
-> Sub (~>) (SUB (UN SUB a)) (SUB (Unit ** UN SUB a))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub UN SUB a ~> (Unit ** UN SUB a)
forall (a :: k). Ob a => a ~> (Unit ** a)
forall k (a :: k). (Monoidal k, Ob a) => a ~> (Unit ** a)
leftUnitorInv
rightUnitor :: forall (a :: SUBCAT ob). Ob a => (a ** Unit) ~> a
rightUnitor = ((UN SUB a ** Unit) ~> UN SUB a)
-> Sub (~>) (SUB (UN SUB a ** Unit)) (SUB (UN SUB a))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (UN SUB a ** Unit) ~> UN SUB a
forall (a :: k). Ob a => (a ** Unit) ~> a
forall k (a :: k). (Monoidal k, Ob a) => (a ** Unit) ~> a
rightUnitor
rightUnitorInv :: forall (a :: SUBCAT ob). Ob a => a ~> (a ** Unit)
rightUnitorInv = (UN SUB a ~> (UN SUB a ** Unit))
-> Sub (~>) (SUB (UN SUB a)) (SUB (UN SUB a ** Unit))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub UN SUB a ~> (UN SUB a ** Unit)
forall (a :: k). Ob a => a ~> (a ** Unit)
forall k (a :: k). (Monoidal k, Ob a) => a ~> (a ** Unit)
rightUnitorInv
associator :: forall (a :: SUBCAT ob) (b :: SUBCAT ob) (c :: SUBCAT ob).
(Ob a, Ob b, Ob c) =>
((a ** b) ** c) ~> (a ** (b ** c))
associator @(SUB a) @(SUB b) @(SUB c) = (((UN SUB a ** UN SUB b) ** UN SUB c)
~> (UN SUB a ** (UN SUB b ** UN SUB c)))
-> Sub
(~>)
(SUB ((UN SUB a ** UN SUB b) ** UN SUB c))
(SUB (UN SUB a ** (UN SUB b ** UN SUB c)))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (forall k (a :: k) (b :: k) (c :: k).
(Monoidal k, Ob a, Ob b, Ob c) =>
((a ** b) ** c) ~> (a ** (b ** c))
associator @_ @a @b @c)
associatorInv :: forall (a :: SUBCAT ob) (b :: SUBCAT ob) (c :: SUBCAT ob).
(Ob a, Ob b, Ob c) =>
(a ** (b ** c)) ~> ((a ** b) ** c)
associatorInv @(SUB a) @(SUB b) @(SUB c) = ((UN SUB a ** (UN SUB b ** UN SUB c))
~> ((UN SUB a ** UN SUB b) ** UN SUB c))
-> Sub
(~>)
(SUB (UN SUB a ** (UN SUB b ** UN SUB c)))
(SUB ((UN SUB a ** UN SUB b) ** UN SUB c))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (forall k (a :: k) (b :: k) (c :: k).
(Monoidal k, Ob a, Ob b, Ob c) =>
(a ** (b ** c)) ~> ((a ** b) ** c)
associatorInv @_ @a @b @c)
instance (SymMonoidal k, SubMonoidal ob) => SymMonoidal (SUBCAT (ob :: OB k)) where
swap :: forall (a :: SUBCAT ob) (b :: SUBCAT ob).
(Ob a, Ob b) =>
(a ** b) ~> (b ** a)
swap @(SUB a) @(SUB b) = ((UN SUB a ** UN SUB b) ~> (UN SUB b ** UN SUB a))
-> Sub
(~>) (SUB (UN SUB a ** UN SUB b)) (SUB (UN SUB b ** UN SUB a))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (forall k (a :: k) (b :: k).
(SymMonoidal k, Ob a, Ob b) =>
(a ** b) ~> (b ** a)
swap @k @a @b)
instance (SubMonoidal ob, CopyDiscard k) => CopyDiscard (SUBCAT (ob :: OB k)) where
copy :: forall (a :: SUBCAT ob). Ob a => a ~> (a ** a)
copy = (UN SUB a ~> (UN SUB a ** UN SUB a))
-> Sub (~>) (SUB (UN SUB a)) (SUB (UN SUB a ** UN SUB a))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub UN SUB a ~> (UN SUB a ** UN SUB a)
forall (a :: k). Ob a => a ~> (a ** a)
forall k (a :: k). (CopyDiscard k, Ob a) => a ~> (a ** a)
copy
discard :: forall (a :: SUBCAT ob). Ob a => a ~> Unit
discard = (UN SUB a ~> Unit) -> Sub (~>) (SUB (UN SUB a)) (SUB Unit)
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub UN SUB a ~> Unit
forall (a :: k). Ob a => a ~> Unit
forall k (a :: k). (CopyDiscard k, Ob a) => a ~> Unit
discard
instance (Representable p, forall a. (ob a) => ob (p % a)) => Representable (Sub p :: CAT (SUBCAT (ob :: OB k))) where
type Sub p % a = SUB (p % UN SUB a)
index :: forall (a :: SUBCAT ob) (b :: SUBCAT ob).
Sub p a b -> a ~> (Sub p % b)
index (Sub p a b
p) = (a ~> (p % b)) -> Sub (~>) (SUB a) (SUB (p % b))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (p a b -> a ~> (p % b)
forall (a :: k) (b :: k). p a b -> a ~> (p % b)
forall {j} {k} (p :: j +-> k) (a :: k) (b :: j).
Representable p =>
p a b -> a ~> (p % b)
index p a b
p)
tabulate :: forall (b :: SUBCAT ob) (a :: SUBCAT ob).
Ob b =>
(a ~> (Sub p % b)) -> Sub p a b
tabulate (Sub a ~> b
f) = p a (UN SUB b) -> Sub p (SUB a) (SUB (UN SUB b))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub ((a ~> (p % UN SUB b)) -> p a (UN SUB b)
forall (b :: k) (a :: k). Ob b => (a ~> (p % b)) -> p a b
forall {j} {k} (p :: j +-> k) (b :: j) (a :: k).
(Representable p, Ob b) =>
(a ~> (p % b)) -> p a b
tabulate a ~> b
a ~> (p % UN SUB b)
f)
repMap :: forall (a :: SUBCAT ob) (b :: SUBCAT ob).
(a ~> b) -> (Sub p % a) ~> (Sub p % b)
repMap (Sub a ~> b
f) = ((p % a) ~> (p % b)) -> Sub (~>) (SUB (p % a)) (SUB (p % b))
forall {k} (ob :: k -> Constraint) (a :: k) (b :: k) (p :: CAT k).
(ob a, ob b) =>
p a b -> Sub p (SUB a) (SUB b)
Sub (forall {j} {k} (p :: j +-> k) (a :: j) (b :: j).
Representable p =>
(a ~> b) -> (p % a) ~> (p % b)
forall (p :: k +-> k) (a :: k) (b :: k).
Representable p =>
(a ~> b) -> (p % a) ~> (p % b)
repMap @p a ~> b
f)
instance (MonoidalAction m Type, Monoidal (SUBCAT (ob :: OB m))) => Strong (SUBCAT (ob :: OB m)) (->) where
Sub a ~> b
f act :: forall (a :: SUBCAT ob) (b :: SUBCAT ob) x y.
(a ~> b) -> (x -> y) -> Act a x -> Act b y
`act` x -> y
g = a ~> b
f (a ~> b) -> (x -> y) -> Act a x -> Act b y
forall (a :: m) (b :: m) x y.
(a ~> b) -> (x -> y) -> Act a x -> Act b y
forall {c} {d} m (p :: c +-> d) (a :: m) (b :: m) (x :: d)
(y :: c).
Strong m p =>
(a ~> b) -> p x y -> p (Act a x) (Act b y)
`act` x -> y
g
instance (MonoidalAction m Type, Monoidal (SUBCAT (ob :: OB m))) => MonoidalAction (SUBCAT (ob :: OB m)) Type where
type Act (p :: SUBCAT ob) (x :: Type) = Act (UN SUB p) x
withObAct :: forall (a :: SUBCAT ob) x r.
(Ob a, Ob x) =>
(Ob (Act a x) => r) -> r
withObAct Ob (Act a x) => r
r = r
Ob (Act a x) => r
r
unitor :: forall x. Ob x => Act Unit x ~> x
unitor = forall m k (x :: k). (MonoidalAction m k, Ob x) => Act Unit x ~> x
unitor @m
unitorInv :: forall x. Ob x => x ~> Act Unit x
unitorInv = forall m k (x :: k). (MonoidalAction m k, Ob x) => x ~> Act Unit x
unitorInv @m
multiplicator :: forall (a :: SUBCAT ob) (b :: SUBCAT ob) x.
(Ob a, Ob b, Ob x) =>
Act a (Act b x) ~> Act (a ** b) x
multiplicator @(SUB p) @(SUB q) @x = forall m k (a :: m) (b :: m) (x :: k).
(MonoidalAction m k, Ob a, Ob b, Ob x) =>
Act a (Act b x) ~> Act (a ** b) x
multiplicator @_ @_ @p @q @x
multiplicatorInv :: forall (a :: SUBCAT ob) (b :: SUBCAT ob) x.
(Ob a, Ob b, Ob x) =>
Act (a ** b) x ~> Act a (Act b x)
multiplicatorInv @(SUB p) @(SUB q) @x = forall m k (a :: m) (b :: m) (x :: k).
(MonoidalAction m k, Ob a, Ob b, Ob x) =>
Act (a ** b) x ~> Act a (Act b x)
multiplicatorInv @_ @_ @p @q @x