Safe Haskell | None |
---|---|
Language | Haskell2010 |
Proarrow.Category.Bicategory.Sub
Documentation
data SUBCAT tag (kk :: CAT k) (i :: k) (j :: k) Source Comments #
Constructors
SUB (kk i j) |
Instances
HasBinaryProducts FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof Associated Types
Methods fstObj :: (Ob0 FUNK a, Ob0 FUNK b) => Obj (Fst FUNK a b) Source Comments # sndObj :: (Ob0 FUNK a, Ob0 FUNK b) => Obj (Snd FUNK a b) Source Comments # prodObj :: forall j a b (f :: FUNK j a) (g :: FUNK j b). (Ob0 FUNK j, Ob0 FUNK a, Ob0 FUNK b, Ob f, Ob g) => Obj (f &&& g) Source Comments # prodUniv :: forall j a b (h :: FUNK j (Product FUNK a b)) (k :: FUNK j (Product FUNK a b)). (Ob0 FUNK j, Ob0 FUNK a, Ob0 FUNK b, Ob h, Ob k) => (O (Fst FUNK a b) h ~> O (Fst FUNK a b) k) -> (O (Snd FUNK a b) h ~> O (Snd FUNK a b) k) -> h ~> k Source Comments # | |||||||||||||||||
HasTerminalObject FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||||||||||
Equipment PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof Methods mapConjoint :: forall {j} {k} (f :: FUNK j k) (g :: FUNK j k). (f ~> g) -> Conjoint PROFK g ~> Conjoint PROFK f Source Comments # conjToId :: Ob0 FUNK k => Conjoint PROFK (I :: FUNK k k) ~> (I :: PROFK k k) Source Comments # conjFromId :: Ob0 FUNK k => (I :: PROFK k k) ~> Conjoint PROFK (I :: FUNK k k) Source Comments # conjToCompose :: forall {k1} {j} {k2} (f :: FUNK j k2) (g :: FUNK k1 j). Obj f -> Obj g -> Conjoint PROFK (O f g) ~> O (Conjoint PROFK g) (Conjoint PROFK f) Source Comments # conjFromCompose :: forall {j1} {j2} {k} (f :: FUNK j2 k) (g :: FUNK j1 j2). Obj f -> Obj g -> O (Conjoint PROFK g) (Conjoint PROFK f) ~> Conjoint PROFK (O f g) Source Comments # comConUnit :: forall {j} {k} (f :: FUNK j k). Obj f -> (I :: PROFK j j) ~> O (Conjoint PROFK f) (Companion PROFK f) Source Comments # comConCounit :: forall {j} {k} (f :: FUNK j k). Obj f -> O (Companion PROFK f) (Conjoint PROFK f) ~> (I :: PROFK k k) Source Comments # | |||||||||||||||||
HasCompanions PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof Methods mapCompanion :: forall {j} {k} (f :: FUNK j k) (g :: FUNK j k). (f ~> g) -> Companion PROFK f ~> Companion PROFK g Source Comments # compToId :: Ob0 FUNK k => Companion PROFK (I :: FUNK k k) ~> (I :: PROFK k k) Source Comments # compFromId :: Ob0 FUNK k => (I :: PROFK k k) ~> Companion PROFK (I :: FUNK k k) Source Comments # compToCompose :: forall {i} {j} {k} (f :: FUNK j k) (g :: FUNK i j). Obj f -> Obj g -> Companion PROFK (O f g) ~> O (Companion PROFK f) (Companion PROFK g) Source Comments # compFromCompose :: forall {j1} {j2} {k} (f :: FUNK j2 k) (g :: FUNK j1 j2). Obj f -> Obj g -> O (Companion PROFK f) (Companion PROFK g) ~> Companion PROFK (O f g) Source Comments # | |||||||||||||||||
HasBinaryCoproducts PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof Associated Types
Methods lftObj :: (Ob0 FUNK i, Ob0 FUNK j) => Obj (Lft PROFK FUNK i j) Source Comments # rgtObj :: (Ob0 FUNK i, Ob0 FUNK j) => Obj (Rgt PROFK FUNK i j) Source Comments # coprodObj :: forall j a b (f :: FUNK a j) (g :: FUNK b j). (Ob0 FUNK j, Ob0 FUNK a, Ob0 FUNK b, Ob f, Ob g) => Obj (CoprodV PROFK FUNK f g) Source Comments # coprodUniv :: forall i i' (a :: PROFK i i') k' (f' :: FUNK i' k') k (p :: PROFK k k') (f :: FUNK i k) j j' (b :: PROFK j j') (g' :: FUNK j' k') (g :: FUNK j k). Sq '(a, f') '(p, f) -> Sq '(b, g') '(p, g) -> Sq '(CoprodH PROFK FUNK a b, CoprodV PROFK FUNK f' g') '(p, CoprodV PROFK FUNK f g) Source Comments # | |||||||||||||||||
HasBinaryProducts PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof Associated Types
Methods fstObj :: (Ob0 FUNK i, Ob0 FUNK j) => Obj (Fst PROFK FUNK i j) Source Comments # sndObj :: (Ob0 FUNK i, Ob0 FUNK j) => Obj (Snd PROFK FUNK i j) Source Comments # prodObj :: forall j a b (f :: FUNK j a) (g :: FUNK j b). (Ob0 FUNK j, Ob0 FUNK a, Ob0 FUNK b, Ob f, Ob g) => Obj (ProdV PROFK FUNK f g) Source Comments # prodUniv :: forall {i} {j} k k' (p :: PROFK k k') i' (f' :: FUNK k' i') (a :: PROFK i i') (f :: FUNK k i) j' (g' :: FUNK k' j') (b :: PROFK j j') (g :: FUNK k j). Sq '(p, f') '(a, f) -> Sq '(p, g') '(b, g) -> Sq '(p, ProdV PROFK FUNK f' g') '(ProdH PROFK FUNK a b, ProdV PROFK FUNK f g) Source Comments # | |||||||||||||||||
HasInitialObject PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||||||||||
HasTerminalObject PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||||||||||
(HasColimits j k, Ob j) => HasColimits FUNK ('PK j :: PROFK a i) (k :: Kind) Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof Methods colimitObj :: forall (d :: FUNK i k). Ob d => Obj (Colimit ('PK j) d) Source Comments # colimit :: forall (d :: FUNK i k). Ob d => O (Companion PROFK d) ('PK j) ~> Companion PROFK (Colimit ('PK j) d) Source Comments # colimitUniv :: forall (d :: FUNK i k) (p :: FUNK a k). (Ob d, Ob p) => (O (Companion PROFK d) ('PK j) ~> Companion PROFK p) -> Colimit ('PK j) d ~> p Source Comments # | |||||||||||||||||
(HasLimits j k, Ob j) => HasLimits FUNK ('PK j :: PROFK i a) (k :: Kind) Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof Methods limitObj :: forall (d :: FUNK i k). Ob d => Obj (Limit ('PK j) d) Source Comments # limit :: forall (d :: FUNK i k). Ob d => O (Companion PROFK (Limit ('PK j) d)) ('PK j) ~> Companion PROFK d Source Comments # limitUniv :: forall (d :: FUNK i k) (p :: FUNK a k). (Ob d, Ob p) => (O (Companion PROFK p) ('PK j) ~> Companion PROFK d) -> p ~> Limit ('PK j) d Source Comments # | |||||||||||||||||
(Bicategory kk, forall (i :: s). Ob0 kk i => IsObI tag kk i, forall (i :: s) (j :: s) (k :: s) (a :: kk j k) (b :: kk i j). (IsOb tag a, IsOb tag b) => IsObO tag kk i j k a b) => Bicategory (SUBCAT tag kk :: s -> s -> Type) Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Sub Methods iObj :: forall (i :: s). Ob0 (SUBCAT tag kk) i => Obj (I :: SUBCAT tag kk i i) Source Comments # o :: forall {i :: s} (j :: s) (k :: s) (a :: SUBCAT tag kk j k) (b :: SUBCAT tag kk j k) (c :: SUBCAT tag kk i j) (d :: SUBCAT tag kk i j). (a ~> b) -> (c ~> d) -> O a c ~> O b d Source Comments # (\\\) :: forall (i :: s) (j :: s) (ps :: SUBCAT tag kk i j) (qs :: SUBCAT tag kk i j) r. ((Ob0 (SUBCAT tag kk) i, Ob0 (SUBCAT tag kk) j, Ob ps, Ob qs) => r) -> (ps ~> qs) -> r Source Comments # leftUnitor :: forall {i :: s} {j :: s} (a :: SUBCAT tag kk i j). (Ob0 (SUBCAT tag kk) i, Ob0 (SUBCAT tag kk) j, Ob a) => O (I :: SUBCAT tag kk j j) a ~> a Source Comments # leftUnitorInv :: forall {i :: s} {j :: s} (a :: SUBCAT tag kk i j). (Ob0 (SUBCAT tag kk) i, Ob0 (SUBCAT tag kk) j, Ob a) => a ~> O (I :: SUBCAT tag kk j j) a Source Comments # rightUnitor :: forall {i :: s} {j :: s} (a :: SUBCAT tag kk i j). (Ob0 (SUBCAT tag kk) i, Ob0 (SUBCAT tag kk) j, Ob a) => O a (I :: SUBCAT tag kk i i) ~> a Source Comments # rightUnitorInv :: forall {i :: s} {j :: s} (a :: SUBCAT tag kk i j). (Ob0 (SUBCAT tag kk) i, Ob0 (SUBCAT tag kk) j, Ob a) => a ~> O a (I :: SUBCAT tag kk i i) Source Comments # associator :: forall {h :: s} {i :: s} {j :: s} {k :: s} (a :: SUBCAT tag kk j k) (b :: SUBCAT tag kk i j) (c :: SUBCAT tag kk h i). (Ob0 (SUBCAT tag kk) h, Ob0 (SUBCAT tag kk) i, Ob0 (SUBCAT tag kk) j, Ob0 (SUBCAT tag kk) k, Ob a, Ob b, Ob c) => O (O a b) c ~> O a (O b c) Source Comments # associatorInv :: forall {h :: s} {i :: s} {j :: s} {k :: s} (a :: SUBCAT tag kk j k) (b :: SUBCAT tag kk i j) (c :: SUBCAT tag kk h i). (Ob0 (SUBCAT tag kk) h, Ob0 (SUBCAT tag kk) i, Ob0 (SUBCAT tag kk) j, Ob0 (SUBCAT tag kk) k, Ob a, Ob b, Ob c) => O a (O b c) ~> O (O a b) c Source Comments # | |||||||||||||||||
CategoryOf (kk i j) => CategoryOf (SUBCAT tag kk i j) Source Comments # | The subcategory with objects with instances of the given constraint `IsOb tag`. | ||||||||||||||||
Defined in Proarrow.Category.Bicategory.Sub | |||||||||||||||||
Promonad ((~>) :: CAT (kk i j)) => Promonad (Sub :: SUBCAT tag kk i j -> SUBCAT tag kk i j -> Type) Source Comments # | |||||||||||||||||
Profunctor ((~>) :: CAT (kk i j)) => Profunctor (Sub :: SUBCAT tag kk i j -> SUBCAT tag kk i j -> Type) Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Sub Methods dimap :: forall (c :: SUBCAT tag kk i j) (a :: SUBCAT tag kk i j) (b :: SUBCAT tag kk i j) (d :: SUBCAT tag kk i j). (c ~> a) -> (b ~> d) -> Sub a b -> Sub c d Source Comments # (\\) :: forall (a :: SUBCAT tag kk i j) (b :: SUBCAT tag kk i j) r. ((Ob a, Ob b) => r) -> Sub a b -> r Source Comments # | |||||||||||||||||
type TerminalObject FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||||||||||
type Terminate FUNK (j :: Type) Source Comments # | |||||||||||||||||
type InitialObject PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||||||||||
type TerminalObject PROFK FUNK Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||||||||||
type Fst FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type Product FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Prof | |||||||||||||||||
type Snd FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type Initiate PROFK FUNK (j :: Type) Source Comments # | |||||||||||||||||
type Terminate PROFK FUNK (j :: Type) Source Comments # | |||||||||||||||||
type Coproduct PROFK FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type Fst PROFK FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type Lft PROFK FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type Product PROFK FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type Rgt PROFK FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type Snd PROFK FUNK (a :: Type) (b :: Type) Source Comments # | |||||||||||||||||
type CoprodH PROFK FUNK ('PK p :: PROFK j1 k1) ('PK q :: PROFK j2 k2) Source Comments # | |||||||||||||||||
type ProdH PROFK FUNK ('PK p :: PROFK j1 k1) ('PK q :: PROFK j2 k2) Source Comments # | |||||||||||||||||
type CoprodV PROFK FUNK ('SUB ('PK f) :: SUBCAT ProfRep PROFK i j1) ('SUB ('PK g) :: SUBCAT ProfRep PROFK j2 j1) Source Comments # | |||||||||||||||||
type ProdV PROFK FUNK ('SUB ('PK f) :: SUBCAT ProfRep PROFK i1 i2) ('SUB ('PK g) :: SUBCAT ProfRep PROFK i1 j) Source Comments # | |||||||||||||||||
type Colimit ('PK j :: PROFK a i) (d :: SUBCAT ProfRep PROFK i k) Source Comments # | |||||||||||||||||
type Limit ('PK j :: PROFK i a) (d :: SUBCAT ProfRep PROFK i k) Source Comments # | |||||||||||||||||
type Ob0 (SUBCAT tag kk :: s -> s -> Type) (k2 :: k1) Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Sub | |||||||||||||||||
type I Source Comments # | |||||||||||||||||
Defined in Proarrow.Category.Bicategory.Sub | |||||||||||||||||
type Companion PROFK (p :: SUBCAT ProfRep PROFK j k) Source Comments # | |||||||||||||||||
type Conjoint PROFK (p :: SUBCAT ProfRep PROFK k j) Source Comments # | |||||||||||||||||
type O (p :: SUBCAT tag kk j1 j2) (q :: SUBCAT tag kk i j1) Source Comments # | |||||||||||||||||
type (f :: SUBCAT ProfRep PROFK i1 i2) &&& (g :: SUBCAT ProfRep PROFK i1 j) Source Comments # | |||||||||||||||||
type UN ('SUB :: kk i j -> SUBCAT tag kk i j) ('SUB p :: SUBCAT tag kk i j) Source Comments # | |||||||||||||||||
type (~>) Source Comments # | |||||||||||||||||
type Ob (a :: SUBCAT tag kk i j) Source Comments # | |||||||||||||||||
data Sub (a :: SUBCAT ob kk i j) (b :: SUBCAT ob kk i j) where Source Comments #
Constructors
Sub :: forall {k} ob (kk :: CAT k) (i :: k) (j :: k) (a1 :: kk i j) (b1 :: kk i j). (IsOb ob a1, IsOb ob b1) => (a1 ~> b1) -> Sub ('SUB a1 :: SUBCAT ob kk i j) ('SUB b1 :: SUBCAT ob kk i j) |
Instances
Promonad ((~>) :: CAT (kk i j)) => Promonad (Sub :: SUBCAT tag kk i j -> SUBCAT tag kk i j -> Type) Source Comments # | |
Profunctor ((~>) :: CAT (kk i j)) => Profunctor (Sub :: SUBCAT tag kk i j -> SUBCAT tag kk i j -> Type) Source Comments # | |
Defined in Proarrow.Category.Bicategory.Sub Methods dimap :: forall (c :: SUBCAT tag kk i j) (a :: SUBCAT tag kk i j) (b :: SUBCAT tag kk i j) (d :: SUBCAT tag kk i j). (c ~> a) -> (b ~> d) -> Sub a b -> Sub c d Source Comments # (\\) :: forall (a :: SUBCAT tag kk i j) (b :: SUBCAT tag kk i j) r. ((Ob a, Ob b) => r) -> Sub a b -> r Source Comments # |