Proarrow.Category.Instance.Prof
Contents
data Prof (p :: j +-> k) (q :: j +-> k) where Source Comments #
Constructors
Fields
Defined in Proarrow.Category.Instance.Prof
Methods
id :: forall (a :: j +-> k). Ob a => Prof a a Source Comments #
(.) :: forall (b :: j +-> k) (c :: j +-> k) (a :: j +-> k). Prof b c -> Prof a b -> Prof a c Source Comments #
Defined in Proarrow.Profunctor.Day
par0 :: Prof (Unit :: j +-> k) (Unit :: j +-> k) Source Comments #
par :: forall (x1 :: j +-> k) (x2 :: j +-> k) (y1 :: j +-> k) (y2 :: j +-> k). Prof x1 x2 -> Prof y1 y2 -> Prof (x1 ** y1) (x2 ** y2) Source Comments #
dimap :: forall (c :: j +-> k) (a :: j +-> k) (b :: j +-> k) (d :: j +-> k). (c ~> a) -> (b ~> d) -> Prof a b -> Prof c d Source Comments #
(\\) :: forall (a :: j +-> k) (b :: j +-> k) r. ((Ob a, Ob b) => r) -> Prof a b -> r Source Comments #
The category of profunctors and natural transformations between them.
Associated Types