module Proarrow.Category.Instance.Bool where
import Proarrow.Category.Monoidal (Monoidal (..), MonoidalProfunctor (..), SymMonoidal (..))
import Proarrow.Core (CAT, CategoryOf (..), Profunctor (..), Promonad (..), dimapDefault, obj)
import Proarrow.Monoid (Comonoid (..), Monoid (..))
import Proarrow.Object.BinaryCoproduct (HasBinaryCoproducts (..))
import Proarrow.Object.BinaryProduct
( HasBinaryProducts (..)
, associatorProd
, associatorProdInv
, leftUnitorProd
, leftUnitorProdInv
, rightUnitorProd
, rightUnitorProdInv
, swapProd'
)
import Proarrow.Object.Dual (StarAutonomous (..))
import Proarrow.Object.Exponential (Closed (..))
import Proarrow.Object.Initial (HasInitialObject (..), initiate)
import Proarrow.Object.Terminal (HasTerminalObject (..), terminate)
import Proarrow.Preorder.ThinCategory (ThinProfunctor (..))
import Proarrow.Category.Monoidal.Distributive (Distributive (..))
data BOOL = FLS | TRU
type Booleans :: CAT BOOL
data Booleans a b where
Fls :: Booleans FLS FLS
F2T :: Booleans FLS TRU
Tru :: Booleans TRU TRU
class IsBool (b :: BOOL) where boolId :: b ~> b
instance IsBool FLS where boolId :: 'FLS ~> 'FLS
boolId = 'FLS ~> 'FLS
Booleans 'FLS 'FLS
Fls
instance IsBool TRU where boolId :: 'TRU ~> 'TRU
boolId = 'TRU ~> 'TRU
Booleans 'TRU 'TRU
Tru
instance CategoryOf BOOL where
type (~>) = Booleans
type Ob b = IsBool b
instance Promonad Booleans where
id :: forall (a :: BOOL). Ob a => Booleans a a
id = a ~> a
Booleans a a
forall (b :: BOOL). IsBool b => b ~> b
boolId
Booleans b c
Fls . :: forall (b :: BOOL) (c :: BOOL) (a :: BOOL).
Booleans b c -> Booleans a b -> Booleans a c
. Booleans a b
Fls = Booleans a c
Booleans 'FLS 'FLS
Fls
Booleans b c
F2T . Booleans a b
Fls = Booleans a c
Booleans 'FLS 'TRU
F2T
Booleans b c
Tru . Booleans a b
F2T = Booleans a c
Booleans 'FLS 'TRU
F2T
Booleans b c
Tru . Booleans a b
Tru = Booleans a c
Booleans 'TRU 'TRU
Tru
instance Profunctor Booleans where
dimap :: forall (c :: BOOL) (a :: BOOL) (b :: BOOL) (d :: BOOL).
(c ~> a) -> (b ~> d) -> Booleans a b -> Booleans c d
dimap = (c ~> a) -> (b ~> d) -> Booleans a b -> Booleans c d
Booleans c a -> Booleans b d -> Booleans a b -> Booleans c d
forall {k} (p :: PRO k k) (c :: k) (a :: k) (b :: k) (d :: k).
Promonad p =>
p c a -> p b d -> p a b -> p c d
dimapDefault
(Ob a, Ob b) => r
r \\ :: forall (a :: BOOL) (b :: BOOL) r.
((Ob a, Ob b) => r) -> Booleans a b -> r
\\ Booleans a b
Fls = r
(Ob a, Ob b) => r
r
(Ob a, Ob b) => r
r \\ Booleans a b
F2T = r
(Ob a, Ob b) => r
r
(Ob a, Ob b) => r
r \\ Booleans a b
Tru = r
(Ob a, Ob b) => r
r
class IsBoolArr (a :: BOOL) b where boolArr :: a ~> b
instance IsBoolArr FLS FLS where boolArr :: 'FLS ~> 'FLS
boolArr = 'FLS ~> 'FLS
Booleans 'FLS 'FLS
Fls
instance IsBoolArr FLS TRU where boolArr :: 'FLS ~> 'TRU
boolArr = 'FLS ~> 'TRU
Booleans 'FLS 'TRU
F2T
instance IsBoolArr TRU TRU where boolArr :: 'TRU ~> 'TRU
boolArr = 'TRU ~> 'TRU
Booleans 'TRU 'TRU
Tru
instance ThinProfunctor Booleans where
type HasArrow Booleans a b = IsBoolArr a b
arr :: forall (a :: BOOL) (b :: BOOL).
(Ob a, Ob b, HasArrow Booleans a b) =>
Booleans a b
arr = a ~> b
Booleans a b
forall (a :: BOOL) (b :: BOOL). IsBoolArr a b => a ~> b
boolArr
withArr :: forall (a :: BOOL) (b :: BOOL) r.
Booleans a b -> (HasArrow Booleans a b => r) -> r
withArr Booleans a b
Fls HasArrow Booleans a b => r
r = r
HasArrow Booleans a b => r
r
withArr Booleans a b
F2T HasArrow Booleans a b => r
r = r
HasArrow Booleans a b => r
r
withArr Booleans a b
Tru HasArrow Booleans a b => r
r = r
HasArrow Booleans a b => r
r
instance HasTerminalObject BOOL where
type TerminalObject = TRU
terminate :: forall (a :: BOOL). Ob a => a ~> TerminalObject
terminate @a = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @a of
Obj a
Booleans a a
Fls -> a ~> TerminalObject
Booleans 'FLS 'TRU
F2T
Obj a
Booleans a a
Tru -> a ~> TerminalObject
Booleans 'TRU 'TRU
Tru
instance HasBinaryProducts BOOL where
type TRU && b = b
type FLS && b = FLS
type a && TRU = a
type a && FLS = FLS
fst :: forall (a :: BOOL) (b :: BOOL). (Ob a, Ob b) => (a && b) ~> a
fst @a @b = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @a of
Obj a
Booleans a a
Fls -> (a && b) ~> a
Booleans 'FLS 'FLS
Fls
Obj a
Booleans a a
Tru -> forall k (a :: k).
(HasTerminalObject k, Ob a) =>
a ~> TerminalObject
terminate @_ @b
snd :: forall (a :: BOOL) (b :: BOOL). (Ob a, Ob b) => (a && b) ~> b
snd @a @b = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @b of
Obj b
Booleans b b
Fls -> (a && b) ~> b
Booleans 'FLS 'FLS
Fls
Obj b
Booleans b b
Tru -> forall k (a :: k).
(HasTerminalObject k, Ob a) =>
a ~> TerminalObject
terminate @_ @a
a ~> x
Booleans a x
Fls &&& :: forall (a :: BOOL) (x :: BOOL) (y :: BOOL).
(a ~> x) -> (a ~> y) -> a ~> (x && y)
&&& a ~> y
_ = a ~> (x && y)
Booleans 'FLS 'FLS
Fls
a ~> x
Booleans a x
F2T &&& a ~> y
b = a ~> y
a ~> (x && y)
b
a ~> x
Booleans a x
Tru &&& a ~> y
Booleans 'TRU y
Tru = a ~> (x && y)
Booleans 'TRU 'TRU
Tru
instance HasInitialObject BOOL where
type InitialObject = FLS
initiate :: forall (a :: BOOL). Ob a => InitialObject ~> a
initiate @a = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @a of
Obj a
Booleans a a
Fls -> InitialObject ~> a
Booleans 'FLS 'FLS
Fls
Obj a
Booleans a a
Tru -> InitialObject ~> a
Booleans 'FLS 'TRU
F2T
instance HasBinaryCoproducts BOOL where
type FLS || b = b
type TRU || b = TRU
type a || FLS = a
type a || TRU = TRU
lft :: forall (a :: BOOL) (b :: BOOL). (Ob a, Ob b) => a ~> (a || b)
lft @a @b = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @a of
Obj a
Booleans a a
Fls -> forall k (a :: k). (HasInitialObject k, Ob a) => InitialObject ~> a
initiate @_ @b
Obj a
Booleans a a
Tru -> a ~> (a || b)
Booleans 'TRU 'TRU
Tru
rgt :: forall (a :: BOOL) (b :: BOOL). (Ob a, Ob b) => b ~> (a || b)
rgt @a @b = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @b of
Obj b
Booleans b b
Fls -> forall k (a :: k). (HasInitialObject k, Ob a) => InitialObject ~> a
initiate @_ @a
Obj b
Booleans b b
Tru -> b ~> (a || b)
Booleans 'TRU 'TRU
Tru
x ~> a
Booleans x a
Fls ||| :: forall (x :: BOOL) (a :: BOOL) (y :: BOOL).
(x ~> a) -> (y ~> a) -> (x || y) ~> a
||| y ~> a
Booleans y 'FLS
Fls = (x || y) ~> a
Booleans 'FLS 'FLS
Fls
x ~> a
Booleans x a
F2T ||| y ~> a
b = y ~> a
(x || y) ~> a
b
x ~> a
Booleans x a
Tru ||| y ~> a
_ = (x || y) ~> a
Booleans 'TRU 'TRU
Tru
instance MonoidalProfunctor Booleans where
par0 :: Booleans Unit Unit
par0 = Booleans Unit Unit
Booleans 'TRU 'TRU
forall {k} (p :: PRO k k) (a :: k). (Promonad p, Ob a) => p a a
forall (a :: BOOL). Ob a => Booleans a a
id
Booleans x1 x2
f par :: forall (x1 :: BOOL) (x2 :: BOOL) (y1 :: BOOL) (y2 :: BOOL).
Booleans x1 x2 -> Booleans y1 y2 -> Booleans (x1 ** y1) (x2 ** y2)
`par` Booleans y1 y2
g = x1 ~> x2
Booleans x1 x2
f (x1 ~> x2) -> (y1 ~> y2) -> (x1 && y1) ~> (x2 && y2)
forall k (a :: k) (b :: k) (x :: k) (y :: k).
HasBinaryProducts k =>
(a ~> x) -> (b ~> y) -> (a && b) ~> (x && y)
forall (a :: BOOL) (b :: BOOL) (x :: BOOL) (y :: BOOL).
(a ~> x) -> (b ~> y) -> (a && b) ~> (x && y)
*** y1 ~> y2
Booleans y1 y2
g
instance Monoidal BOOL where
type Unit = TerminalObject
type a ** b = a && b
leftUnitor :: forall (a :: BOOL). Ob a => (Unit ** a) ~> a
leftUnitor = (Unit ** a) ~> a
(TerminalObject && a) ~> a
forall {k} (a :: k).
(HasProducts k, Ob a) =>
(TerminalObject && a) ~> a
leftUnitorProd
leftUnitorInv :: forall (a :: BOOL). Ob a => a ~> (Unit ** a)
leftUnitorInv = a ~> (Unit ** a)
a ~> (TerminalObject && a)
forall {k} (a :: k).
(HasProducts k, Ob a) =>
a ~> (TerminalObject && a)
leftUnitorProdInv
rightUnitor :: forall (a :: BOOL). Ob a => (a ** Unit) ~> a
rightUnitor = (a ** Unit) ~> a
(a && TerminalObject) ~> a
forall {k} (a :: k).
(HasProducts k, Ob a) =>
(a && TerminalObject) ~> a
rightUnitorProd
rightUnitorInv :: forall (a :: BOOL). Ob a => a ~> (a ** Unit)
rightUnitorInv = a ~> (a ** Unit)
a ~> (a && TerminalObject)
forall {k} (a :: k).
(HasProducts k, Ob a) =>
a ~> (a && TerminalObject)
rightUnitorProdInv
associator :: forall (a :: BOOL) (b :: BOOL) (c :: BOOL).
(Ob a, Ob b, Ob c) =>
((a ** b) ** c) ~> (a ** (b ** c))
associator @a @b @c = forall {k} (a :: k) (b :: k) (c :: k).
(HasProducts k, Ob a, Ob b, Ob c) =>
((a && b) && c) ~> (a && (b && c))
forall (a :: BOOL) (b :: BOOL) (c :: BOOL).
(HasProducts BOOL, Ob a, Ob b, Ob c) =>
((a && b) && c) ~> (a && (b && c))
associatorProd @a @b @c
associatorInv :: forall (a :: BOOL) (b :: BOOL) (c :: BOOL).
(Ob a, Ob b, Ob c) =>
(a ** (b ** c)) ~> ((a ** b) ** c)
associatorInv @a @b @c = forall {k} (a :: k) (b :: k) (c :: k).
(HasProducts k, Ob a, Ob b, Ob c) =>
(a && (b && c)) ~> ((a && b) && c)
forall (a :: BOOL) (b :: BOOL) (c :: BOOL).
(HasProducts BOOL, Ob a, Ob b, Ob c) =>
(a && (b && c)) ~> ((a && b) && c)
associatorProdInv @a @b @c
instance SymMonoidal BOOL where
swap' :: forall (a :: BOOL) (a' :: BOOL) (b :: BOOL) (b' :: BOOL).
(a ~> a') -> (b ~> b') -> (a ** b) ~> (b' ** a')
swap' = (a ~> a') -> (b ~> b') -> (a ** b) ~> (b' ** a')
(a ~> a') -> (b ~> b') -> (a && b) ~> (b' && a')
forall k (a :: k) (a' :: k) (b :: k) (b' :: k).
HasBinaryProducts k =>
(a ~> a') -> (b ~> b') -> (a && b) ~> (b' && a')
swapProd'
instance Distributive BOOL where
distL :: forall (a :: BOOL) (b :: BOOL) (c :: BOOL).
(Ob a, Ob b, Ob c) =>
(a ** (b || c)) ~> ((a ** b) || (a ** c))
distL @a @b @c = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @a of
Obj a
Booleans a a
Fls -> (a ** (b || c)) ~> ((a ** b) || (a ** c))
Booleans 'FLS 'FLS
Fls
Obj a
Booleans a a
Tru -> forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @b Obj b -> (c ~> c) -> (b || c) ~> (b || c)
forall k (a :: k) (b :: k) (x :: k) (y :: k).
HasBinaryCoproducts k =>
(a ~> x) -> (b ~> y) -> (a || b) ~> (x || y)
forall (a :: BOOL) (b :: BOOL) (x :: BOOL) (y :: BOOL).
(a ~> x) -> (b ~> y) -> (a || b) ~> (x || y)
+++ forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @c
distR :: forall (a :: BOOL) (b :: BOOL) (c :: BOOL).
(Ob a, Ob b, Ob c) =>
((a || b) ** c) ~> ((a ** c) || (b ** c))
distR @a @b @c = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @c of
Obj c
Booleans c c
Fls -> ((a || b) ** c) ~> ((a ** c) || (b ** c))
Booleans 'FLS 'FLS
Fls
Obj c
Booleans c c
Tru -> forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @a Obj a -> (b ~> b) -> (a || b) ~> (a || b)
forall k (a :: k) (b :: k) (x :: k) (y :: k).
HasBinaryCoproducts k =>
(a ~> x) -> (b ~> y) -> (a || b) ~> (x || y)
forall (a :: BOOL) (b :: BOOL) (x :: BOOL) (y :: BOOL).
(a ~> x) -> (b ~> y) -> (a || b) ~> (x || y)
+++ forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @b
distL0 :: forall (a :: BOOL). Ob a => (a ** InitialObject) ~> InitialObject
distL0 = (a ** InitialObject) ~> InitialObject
Booleans 'FLS 'FLS
Fls
distR0 :: forall (a :: BOOL). Ob a => (InitialObject ** a) ~> InitialObject
distR0 = (InitialObject ** a) ~> InitialObject
Booleans 'FLS 'FLS
Fls
instance Closed BOOL where
type FLS ~~> b = TRU
type a ~~> TRU = TRU
type TRU ~~> FLS = FLS
curry' :: forall (a :: BOOL) (b :: BOOL) (c :: BOOL).
Obj a -> Obj b -> ((a ** b) ~> c) -> a ~> (b ~~> c)
curry' Obj a
Booleans a a
Fls Obj b
Booleans b b
Fls (a ** b) ~> c
_ = a ~> (b ~~> c)
Booleans 'FLS 'TRU
F2T
curry' Obj a
Booleans a a
Fls Obj b
Booleans b b
Tru (a ** b) ~> c
Booleans 'FLS c
Fls = a ~> (b ~~> c)
Booleans 'FLS 'FLS
Fls
curry' Obj a
Booleans a a
Fls Obj b
Booleans b b
Tru (a ** b) ~> c
Booleans 'FLS c
F2T = a ~> (b ~~> c)
Booleans 'FLS 'TRU
F2T
curry' Obj a
Booleans a a
Tru Obj b
Booleans b b
Fls (a ** b) ~> c
_ = a ~> (b ~~> c)
Booleans 'TRU 'TRU
Tru
curry' Obj a
Booleans a a
Tru Obj b
Booleans b b
Tru (a ** b) ~> c
Booleans 'TRU c
Tru = a ~> (b ~~> c)
Booleans 'TRU 'TRU
Tru
uncurry' :: forall (b :: BOOL) (c :: BOOL) (a :: BOOL).
Obj b -> Obj c -> (a ~> (b ~~> c)) -> (a ** b) ~> c
uncurry' Obj b
Booleans b b
Fls Obj c
c a ~> (b ~~> c)
_ = Obj c -> InitialObject ~> c
forall k (a' :: k) (a :: k).
HasInitialObject k =>
(a' ~> a) -> InitialObject ~> a
forall (a' :: BOOL) (a :: BOOL). (a' ~> a) -> InitialObject ~> a
initiate' Obj c
c
uncurry' Obj b
Booleans b b
Tru Obj c
Booleans c c
Fls a ~> (b ~~> c)
a = a ~> (b ~~> c)
(a ** b) ~> c
a
uncurry' Obj b
Booleans b b
Tru Obj c
Booleans c c
Tru a ~> (b ~~> c)
a = a ~> (b ~~> c)
(a ** b) ~> c
a
b ~> y
_ ^^^ :: forall (b :: BOOL) (y :: BOOL) (x :: BOOL) (a :: BOOL).
(b ~> y) -> (x ~> a) -> (a ~~> b) ~> (x ~~> y)
^^^ x ~> a
Booleans x a
Fls = (a ~~> b) ~> (x ~~> y)
Booleans 'TRU 'TRU
Tru
b ~> y
Booleans b y
Tru ^^^ x ~> a
_ = (a ~~> b) ~> (x ~~> y)
Booleans 'TRU 'TRU
Tru
b ~> y
Booleans b y
Fls ^^^ x ~> a
Booleans x a
Tru = (a ~~> b) ~> (x ~~> y)
Booleans 'FLS 'FLS
Fls
b ~> y
Booleans b y
Fls ^^^ x ~> a
Booleans x a
F2T = (a ~~> b) ~> (x ~~> y)
Booleans 'FLS 'TRU
F2T
b ~> y
Booleans b y
F2T ^^^ x ~> a
Booleans x a
F2T = (a ~~> b) ~> (x ~~> y)
Booleans 'FLS 'TRU
F2T
b ~> y
Booleans b y
F2T ^^^ x ~> a
Booleans x a
Tru = (a ~~> b) ~> (x ~~> y)
Booleans 'FLS 'TRU
F2T
instance StarAutonomous BOOL where
type Bottom = FLS
bottomObj :: Obj Bottom
bottomObj = Obj Bottom
Booleans 'FLS 'FLS
Fls
doubleNeg :: forall (a :: BOOL).
(StarAutonomous BOOL, Ob a) =>
Dual (Dual a) ~> a
doubleNeg @a = case forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a
forall (a :: BOOL). (CategoryOf BOOL, Ob a) => Obj a
obj @a of
Obj a
Booleans a a
Fls -> Dual (Dual a) ~> a
Booleans 'FLS 'FLS
Fls
Obj a
Booleans a a
Tru -> Dual (Dual a) ~> a
Booleans 'TRU 'TRU
Tru
instance Monoid TRU where
mempty :: Unit ~> 'TRU
mempty = Unit ~> 'TRU
Booleans 'TRU 'TRU
Tru
mappend :: ('TRU ** 'TRU) ~> 'TRU
mappend = ('TRU ** 'TRU) ~> 'TRU
Booleans 'TRU 'TRU
Tru
instance Comonoid TRU where
counit :: 'TRU ~> Unit
counit = 'TRU ~> Unit
Booleans 'TRU 'TRU
Tru
comult :: 'TRU ~> ('TRU ** 'TRU)
comult = 'TRU ~> ('TRU ** 'TRU)
Booleans 'TRU 'TRU
Tru
instance Comonoid FLS where
counit :: 'FLS ~> Unit
counit = 'FLS ~> Unit
Booleans 'FLS 'TRU
F2T
comult :: 'FLS ~> ('FLS ** 'FLS)
comult = 'FLS ~> ('FLS ** 'FLS)
Booleans 'FLS 'FLS
Fls