CategoryOf k => Profunctor (DoubleNeg :: k -> DUAL (DUAL k) -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
CategoryOf k => Profunctor (Hom :: () -> (OPPOSITE k, k) -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Limit |
Closed k => Profunctor (ExponentialFunctor :: k -> (OPPOSITE k, k) -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Object.Exponential |
CategoryOf k => HasLimits (Hom :: () -> (OPPOSITE k, k) -> Type) Type Source Comments # | |
Instance detailsDefined in Proarrow.Category.Limit |
Monoidal k => Monoidal (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
SymMonoidal k => SymMonoidal (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
CategoryOf k => CategoryOf (OPPOSITE k) Source Comments # | The opposite category of the category of k . |
Instance detailsDefined in Proarrow.Category.Opposite |
HasBinaryProducts k => HasBinaryCoproducts (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
HasBinaryCoproducts k => HasBinaryProducts (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
HasTerminalObject k => HasInitialObject (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
HasInitialObject k => HasTerminalObject (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Profunctor p => Functor (Op p a :: OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
MonoidalProfunctor p => MonoidalProfunctor (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Profunctor p => Profunctor (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Representable p => Corepresentable (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Corepresentable p => Representable (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Adjunction q p => Adjunction (Op p :: OPPOSITE k -> OPPOSITE j -> Type) (Op q :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Adjunction |
Monoid c => Comonoid ('OP c :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Comonoid c => Monoid ('OP c :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Functor (Ran :: OPPOSITE (i +-> j) -> (i +-> k) -> k -> j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Profunctor.Ran |
Functor (Rift :: OPPOSITE (k +-> i) -> (j +-> i) -> k -> j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Profunctor.Rift |
Promonad c => Promonad (Op c :: OPPOSITE j -> OPPOSITE j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
Closed k => Representable (ExponentialFunctor :: k -> (OPPOSITE k, k) -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Object.Exponential |
(Profunctor p, CategoryOf i, CategoryOf j) => Profunctor (Curry p :: (k, OPPOSITE j) -> i -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
(Profunctor p, Profunctor q) => Profunctor (DistribDual p q :: (DUAL j, DUAL k) -> DUAL (j', k') -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
type UN ('OP :: j -> OPPOSITE j) ('OP k :: OPPOSITE j) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type Unit Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type (~>) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type InitialObject Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type TerminalObject Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type Ob (a :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type (a :: OPPOSITE k) ** (b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type (a :: OPPOSITE k) || (b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type (a :: OPPOSITE k) && (b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type (Op p :: OPPOSITE j -> OPPOSITE k -> Type) %% ('OP a :: OPPOSITE j) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type (Op p :: OPPOSITE j -> OPPOSITE k -> Type) % ('OP a :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
type Limit (Hom :: () -> (OPPOSITE k, k) -> Type) (d :: (OPPOSITE k, k) +-> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Limit |
type (ExponentialFunctor :: k -> (OPPOSITE k, k) -> Type) % ('('OP a, b) :: (OPPOSITE k, k)) Source Comments # | |
Instance detailsDefined in Proarrow.Object.Exponential |