| (Powered v k, Enriched v (OPPOSITE k), forall (a :: k) (b :: k). HomObjOp v a b) => Copowered v (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Object.Copower |
| (Copowered v k, Enriched v (OPPOSITE k), forall (a :: k) (b :: k). HomObjOp v a b) => Powered v (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Object.Copower |
| CategoryOf k => Profunctor (Hom :: (OPPOSITE k, k) -> () -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Colimit |
| CategoryOf k => HasLimits (Hom :: () -> (OPPOSITE k, k) -> Type) Type Source Comments # | |
Instance detailsDefined in Proarrow.Category.Limit |
| (CategoryOf j, CategoryOf k) => Functor (Yo :: k -> OPPOSITE j -> k -> j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Profunctor.Yoneda |
| (Profunctor p, CategoryOf i, CategoryOf j) => Profunctor (Curry p :: (OPPOSITE j, k) -> i -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
| Monoidal k => Monoidal (OPPOSITE k) Source Comments # | The opposite of a monoidal category is also monoidal, with the same tensor product. |
Instance detailsDefined in Proarrow.Category.Opposite |
| SymMonoidal k => SymMonoidal (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| CategoryOf k => CategoryOf (OPPOSITE k) Source Comments # | The opposite category of the category of k. |
Instance detailsDefined in Proarrow.Category.Opposite |
| HasBinaryProducts k => HasBinaryCoproducts (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| HasBinaryCoproducts k => HasBinaryProducts (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| HasTerminalObject k => HasInitialObject (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| HasInitialObject k => HasTerminalObject (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| FunctorForRep DualUnit Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
| Profunctor p => Functor (Op p a :: OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| MonoidalAction m k => MonoidalAction (OPPOSITE m) (OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| EnrichedProfunctor v p => EnrichedProfunctor (Clone v) (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Enriched |
| Strong k2 p => Strong (OPPOSITE k2) (Op p :: OPPOSITE j -> OPPOSITE k1 -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| ThinProfunctor p => ThinProfunctor (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| MonoidalProfunctor p => MonoidalProfunctor (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| Profunctor p => Profunctor (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| Representable p => Corepresentable (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| Corepresentable p => Representable (Op p :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| Proadjunction q p => Proadjunction (Op p :: OPPOSITE k -> OPPOSITE j -> Type) (Op q :: OPPOSITE j -> OPPOSITE k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Adjunction |
| Monoid c => Comonoid ('OP c :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Monoid |
| Comonoid c => Monoid ('OP c :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Monoid |
| MonoidalAction m k => Functor (Reader :: OPPOSITE m -> k -> k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Promonad.Reader |
| (CategoryOf j, CategoryOf k) => FunctorForRep (DistribDual :: OPPOSITE (j, k) +-> (OPPOSITE j, OPPOSITE k)) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
| Functor (Ran :: OPPOSITE (i +-> j) -> (i +-> k) -> k -> j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Profunctor.Ran |
| Functor (Rift :: OPPOSITE (k +-> i) -> (j +-> i) -> k -> j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Profunctor.Rift |
| (CategoryOf j, CategoryOf k) => Functor (Yo a :: OPPOSITE j -> k -> j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Profunctor.Yoneda |
| Promonad c => Promonad (Op c :: OPPOSITE j -> OPPOSITE j -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| CategoryOf k => Profunctor (Hom :: () -> (OPPOSITE k, k) -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Limit |
| CategoryOf k => HasColimits (Hom :: (OPPOSITE k, k) -> () -> Type) Type Source Comments # | |
Instance detailsDefined in Proarrow.Category.Colimit |
| (CategoryOf j, CategoryOf k) => FunctorForRep (CombineDual :: (OPPOSITE j, OPPOSITE k) +-> OPPOSITE (j, k)) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
| Profunctor j => Profunctor (LimitAdj j :: COREPK b k -> REPK a k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Adjunction |
| HasColimits j k => Corepresentable (LimitAdj j :: COREPK b k -> REPK a k -> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Adjunction |
| HasLimits j k => Representable (LimitAdj j :: COREPK b k -> REPK a k -> Type) Source Comments # | Colimit j -| Limit j |
Instance detailsDefined in Proarrow.Adjunction |
| type (n :: v) *. ('OP a :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Object.Copower |
| type UN ('OP :: j -> OPPOSITE j) ('OP k :: OPPOSITE j) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type Colimit (Hom :: (OPPOSITE k, k) -> () -> Type) (d :: Type +-> (OPPOSITE k, k)) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Colimit |
| type Unit Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type (~>) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type InitialObject Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type TerminalObject Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type Ob (a :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type (a :: OPPOSITE k) ** (b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type (a :: OPPOSITE k) || (b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type (a :: OPPOSITE k) && (b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type DualUnit @ ('OP '()) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
| type ('OP a :: OPPOSITE k) ^ (n :: v) Source Comments # | |
Instance detailsDefined in Proarrow.Object.Copower |
| type ProObj (Clone v) (Op p :: OPPOSITE j -> OPPOSITE k -> Type) ('OP a :: OPPOSITE j) ('OP b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Enriched |
| type Act ('OP a :: OPPOSITE m) ('OP b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type (Op p :: OPPOSITE j -> OPPOSITE k -> Type) %% ('OP a :: OPPOSITE j) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type (Op p :: OPPOSITE j -> OPPOSITE k -> Type) % ('OP a :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type HasArrow (Op p :: OPPOSITE j -> OPPOSITE k -> Type) ('OP a :: OPPOSITE j) ('OP b :: OPPOSITE k) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Opposite |
| type (DistribDual :: OPPOSITE (j, k) +-> (OPPOSITE j, OPPOSITE k)) @ ('OP '(a, b) :: OPPOSITE (j, k)) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
| type Limit (Hom :: () -> (OPPOSITE k, k) -> Type) (d :: (OPPOSITE k, k) +-> Type) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Limit |
| type (CombineDual :: (OPPOSITE j, OPPOSITE k) +-> OPPOSITE (j, k)) @ ('('OP a, 'OP b) :: (OPPOSITE j, OPPOSITE k)) Source Comments # | |
Instance detailsDefined in Proarrow.Category.Instance.Cat |
| type (LimitAdj j :: COREPK b k -> REPK a k -> Type) %% (c :: COREPK b k) Source Comments # | |
Instance detailsDefined in Proarrow.Adjunction |
| type (LimitAdj j :: COREPK b k -> REPK a k -> Type) % (r :: REPK a k) Source Comments # | |
Instance detailsDefined in Proarrow.Adjunction |