module Proarrow.Object.Initial where import Data.Kind (Type) import Data.Void (Void, absurd) import Proarrow.Category.Instance.Product ((:**:) (..)) import Proarrow.Category.Instance.Prof (Prof (..)) import Proarrow.Core (CategoryOf (..), PRO, Profunctor (..), Promonad (..)) import Proarrow.Object (obj) import Proarrow.Profunctor.Initial (InitialProfunctor) class (CategoryOf k, Ob (InitialObject :: k)) => HasInitialObject k where {-# MINIMAL initiate | initiate' #-} type InitialObject :: k initiate :: (Ob (a :: k)) => InitialObject ~> a initiate @a = (a ~> a) -> InitialObject ~> a forall (a' :: k) (a :: k). (a' ~> a) -> InitialObject ~> a forall k (a' :: k) (a :: k). HasInitialObject k => (a' ~> a) -> InitialObject ~> a initiate' (forall (a :: k). (CategoryOf k, Ob a) => Obj a forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a obj @a) initiate' :: (a' :: k) ~> a -> InitialObject ~> a initiate' @a' a' ~> a a = a' ~> a a (a' ~> a) -> (InitialObject ~> a') -> InitialObject ~> a forall (b :: k) (c :: k) (a :: k). (b ~> c) -> (a ~> b) -> a ~> c forall {k} (p :: PRO k k) (b :: k) (c :: k) (a :: k). Promonad p => p b c -> p a b -> p a c . forall k (a :: k). (HasInitialObject k, Ob a) => InitialObject ~> a initiate @k @a' ((Ob a', Ob a) => InitialObject ~> a) -> (a' ~> a) -> InitialObject ~> a forall (a :: k) (b :: k) r. ((Ob a, Ob b) => r) -> (a ~> b) -> r forall {j} {k} (p :: PRO j k) (a :: j) (b :: k) r. Profunctor p => ((Ob a, Ob b) => r) -> p a b -> r \\ a' ~> a a instance HasInitialObject Type where type InitialObject = Void initiate :: forall a. Ob a => InitialObject ~> a initiate = InitialObject ~> a Void -> a forall a. Void -> a absurd instance (HasInitialObject j, HasInitialObject k) => HasInitialObject (j, k) where type InitialObject = '(InitialObject, InitialObject) initiate :: forall (a :: (j, k)). Ob a => InitialObject ~> a initiate = InitialObject ~> Fst a forall (a :: j). Ob a => InitialObject ~> a forall k (a :: k). (HasInitialObject k, Ob a) => InitialObject ~> a initiate (InitialObject ~> Fst a) -> (InitialObject ~> Snd a) -> (:**:) (~>) (~>) '(InitialObject, InitialObject) '(Fst a, Snd a) forall {j1} {k1} {j2} {k2} (c :: j1 +-> k1) (a1 :: k1) (b1 :: j1) (d :: j2 +-> k2) (a2 :: k2) (b2 :: j2). c a1 b1 -> d a2 b2 -> (:**:) c d '(a1, a2) '(b1, b2) :**: InitialObject ~> Snd a forall (a :: k). Ob a => InitialObject ~> a forall k (a :: k). (HasInitialObject k, Ob a) => InitialObject ~> a initiate instance (CategoryOf j, CategoryOf k) => HasInitialObject (PRO j k) where type InitialObject = InitialProfunctor initiate :: forall (a :: PRO j k). Ob a => InitialObject ~> a initiate = (InitialProfunctor :~> a) -> Prof InitialProfunctor a forall {k} {j} (p :: j +-> k) (q :: j +-> k). (Profunctor p, Profunctor q) => (p :~> q) -> Prof p q Prof \case {}