{-# LANGUAGE AllowAmbiguousTypes #-} module Proarrow.Profunctor.Corepresentable where import Data.Kind (Constraint) import Proarrow.Core (CategoryOf (..), Profunctor (..), Promonad (..), type (+->)) import Proarrow.Object (obj) infixl 8 %% type Corepresentable :: forall {j} {k}. (j +-> k) -> Constraint class (Profunctor p) => Corepresentable (p :: j +-> k) where type p %% (a :: k) :: j coindex :: p a b -> p %% a ~> b cotabulate :: (Ob a) => (p %% a ~> b) -> p a b corepMap :: (a ~> b) -> p %% a ~> p %% b withCorepObj :: forall p a r. (Corepresentable p, Ob a) => ((Ob (p %% a)) => r) -> r withCorepObj :: forall {k} {k} (p :: k +-> k) (a :: k) r. (Corepresentable p, Ob a) => (Ob (p %% a) => r) -> r withCorepObj Ob (p %% a) => r r = r Ob (p %% a) => r (Ob (p %% a), Ob (p %% a)) => r r ((Ob (p %% a), Ob (p %% a)) => r) -> ((p %% a) ~> (p %% a)) -> r forall (a :: k) (b :: k) r. ((Ob a, Ob b) => r) -> (a ~> b) -> r forall {j} {k} (p :: PRO j k) (a :: j) (b :: k) r. Profunctor p => ((Ob a, Ob b) => r) -> p a b -> r \\ forall {j} {k} (p :: j +-> k) (a :: k) (b :: k). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) forall (p :: k +-> k) (a :: k) (b :: k). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) corepMap @p (forall (a :: k). (CategoryOf k, Ob a) => Obj a forall {k} (a :: k). (CategoryOf k, Ob a) => Obj a obj @a) dimapCorep :: forall p a b c d. (Corepresentable p) => (c ~> a) -> (b ~> d) -> p a b -> p c d dimapCorep :: forall {j} {k} (p :: j +-> k) (a :: k) (b :: j) (c :: k) (d :: j). Corepresentable p => (c ~> a) -> (b ~> d) -> p a b -> p c d dimapCorep c ~> a l b ~> d r = forall {j} {k} (p :: j +-> k) (a :: k) (b :: j). (Corepresentable p, Ob a) => ((p %% a) ~> b) -> p a b forall (p :: j +-> k) (a :: k) (b :: j). (Corepresentable p, Ob a) => ((p %% a) ~> b) -> p a b cotabulate @p (((p %% c) ~> d) -> p c d) -> (p a b -> (p %% c) ~> d) -> p a b -> p c d forall b c a. (b -> c) -> (a -> b) -> a -> c forall {k} (p :: PRO k k) (b :: k) (c :: k) (a :: k). Promonad p => p b c -> p a b -> p a c . ((p %% c) ~> (p %% a)) -> (b ~> d) -> ((p %% a) ~> b) -> (p %% c) ~> d forall (c :: j) (a :: j) (b :: j) (d :: j). (c ~> a) -> (b ~> d) -> (a ~> b) -> c ~> d forall {j} {k} (p :: PRO j k) (c :: j) (a :: j) (b :: k) (d :: k). Profunctor p => (c ~> a) -> (b ~> d) -> p a b -> p c d dimap (forall {j} {k} (p :: j +-> k) (a :: k) (b :: k). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) forall (p :: j +-> k) (a :: k) (b :: k). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) corepMap @p c ~> a l) b ~> d r (((p %% a) ~> b) -> (p %% c) ~> d) -> (p a b -> (p %% a) ~> b) -> p a b -> (p %% c) ~> d forall b c a. (b -> c) -> (a -> b) -> a -> c forall {k} (p :: PRO k k) (b :: k) (c :: k) (a :: k). Promonad p => p b c -> p a b -> p a c . p a b -> (p %% a) ~> b forall (a :: k) (b :: j). p a b -> (p %% a) ~> b forall {j} {k} (p :: j +-> k) (a :: k) (b :: j). Corepresentable p => p a b -> (p %% a) ~> b coindex ((Ob c, Ob a) => p a b -> p c d) -> (c ~> a) -> p a b -> p c d forall (a :: k) (b :: k) r. ((Ob a, Ob b) => r) -> (a ~> b) -> r forall {j} {k} (p :: PRO j k) (a :: j) (b :: k) r. Profunctor p => ((Ob a, Ob b) => r) -> p a b -> r \\ c ~> a l type Corep :: (j +-> k) -> (j +-> k) data Corep p a b where Corep :: Ob a => { forall {k} {k} (a :: k) (p :: k +-> k) (b :: k). Corep p a b -> (p %% a) ~> b getCorep :: p %% a ~> b } -> Corep p a b instance (Corepresentable p) => Profunctor (Corep p) where dimap :: forall (c :: j) (a :: j) (b :: k) (d :: k). (c ~> a) -> (b ~> d) -> Corep p a b -> Corep p c d dimap c ~> a f b ~> d g (Corep (p %% a) ~> b h) = ((p %% c) ~> d) -> Corep p c d forall {k} {k} (a :: k) (p :: k +-> k) (b :: k). Ob a => ((p %% a) ~> b) -> Corep p a b Corep (b ~> d g (b ~> d) -> ((p %% c) ~> b) -> (p %% c) ~> d forall (b :: k) (c :: k) (a :: k). (b ~> c) -> (a ~> b) -> a ~> c forall {k} (p :: PRO k k) (b :: k) (c :: k) (a :: k). Promonad p => p b c -> p a b -> p a c . (p %% a) ~> b h ((p %% a) ~> b) -> ((p %% c) ~> (p %% a)) -> (p %% c) ~> b forall (b :: k) (c :: k) (a :: k). (b ~> c) -> (a ~> b) -> a ~> c forall {k} (p :: PRO k k) (b :: k) (c :: k) (a :: k). Promonad p => p b c -> p a b -> p a c . forall {j} {k} (p :: j +-> k) (a :: k) (b :: k). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) forall (p :: k +-> j) (a :: j) (b :: j). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) corepMap @p c ~> a f) ((Ob c, Ob a) => Corep p c d) -> (c ~> a) -> Corep p c d forall (a :: j) (b :: j) r. ((Ob a, Ob b) => r) -> (a ~> b) -> r forall {j} {k} (p :: PRO j k) (a :: j) (b :: k) r. Profunctor p => ((Ob a, Ob b) => r) -> p a b -> r \\ c ~> a f (Ob a, Ob b) => r r \\ :: forall (a :: j) (b :: k) r. ((Ob a, Ob b) => r) -> Corep p a b -> r \\ Corep (p %% a) ~> b f = r (Ob (p %% a), Ob b) => r (Ob a, Ob b) => r r ((Ob (p %% a), Ob b) => r) -> ((p %% a) ~> b) -> r forall (a :: k) (b :: k) r. ((Ob a, Ob b) => r) -> (a ~> b) -> r forall {j} {k} (p :: PRO j k) (a :: j) (b :: k) r. Profunctor p => ((Ob a, Ob b) => r) -> p a b -> r \\ (p %% a) ~> b f instance (Corepresentable p) => Corepresentable (Corep p) where type Corep p %% a = p %% a coindex :: forall (a :: k) (b :: j). Corep p a b -> (Corep p %% a) ~> b coindex (Corep (p %% a) ~> b f) = (p %% a) ~> b (Corep p %% a) ~> b f cotabulate :: forall (a :: k) (b :: j). Ob a => ((Corep p %% a) ~> b) -> Corep p a b cotabulate = ((p %% a) ~> b) -> Corep p a b ((Corep p %% a) ~> b) -> Corep p a b forall {k} {k} (a :: k) (p :: k +-> k) (b :: k). Ob a => ((p %% a) ~> b) -> Corep p a b Corep corepMap :: forall (a :: k) (b :: k). (a ~> b) -> (Corep p %% a) ~> (Corep p %% b) corepMap = forall {j} {k} (p :: j +-> k) (a :: k) (b :: k). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) forall (p :: j +-> k) (a :: k) (b :: k). Corepresentable p => (a ~> b) -> (p %% a) ~> (p %% b) corepMap @p